Solving of functional equations associated with the scalar product
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional equations $$\left[X\right]\frac{\partial \chi}{\partial \theta} + X_{n+1}(x^{n+1})\frac{\partial \chi}{\partial x^{n+1}} + X_{n+1}(y^{n+1})\frac{\partial \chi}{\partial y^{n+1}} = 0,$$$$[X]\frac{\partial \sigma}{\partial \theta} + (X_{n+1}(x) - X_{n+1}(y))\frac{\partial \sigma}{\partial w} = 0,  [X]\frac{\partial \varkappa}{\partial \theta} + (X_{n+1}(x) + X_{n+1}(y))\frac{\partial \varkappa}{\partial z} = 0, $$ is solved in the paper. Here $[X] = \sum^{n}_{k=1}\bigl(\varepsilon_kx^kX_k(y) + \varepsilon_ky^kX_k(x))$, $x = (x^1,\ldots,x^n,x^{n+1})$, $\varepsilon_k=\pm1$, the equations are arising in the embedding problem of the space $\mathbb R^n$ with the inner product of the form $\theta = \varepsilon_1x^1y^1 + \cdots + \varepsilon_nx^ny^n$. In this problem, all kinds of functions $f = f(\theta,x^{n+ 1},y^{n+ 1}) $ are found that are two-point invariants of $n(n + 1)/2$-parametric group of transformations.
Keywords: functional equation, functional-differential equation, differential equation, scalar product.
@article{CHFMJ_2017_2_1_a3,
     author = {V. A. Kyrov},
     title = {Solving of functional equations associated with the scalar product},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Solving of functional equations associated with the scalar product
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 30
EP  - 45
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/
LA  - ru
ID  - CHFMJ_2017_2_1_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Solving of functional equations associated with the scalar product
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 30-45
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/
%G ru
%F CHFMJ_2017_2_1_a3
V. A. Kyrov. Solving of functional equations associated with the scalar product. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 30-45. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/

[1] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structures, Gorno-Altaisk State University Publ., Gorno-Altaisk, 2016, 197 pp. (In Russ.)

[2] R.A. Bogdanova, “Movements groups of two-dimensional Helmholtz geometries as solution of functional equation”, Siberian journal of industrial mathematics, 12:4 (2009), 12–22 (In Russ.) | MR | Zbl

[3] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Siberian journal of industrial mathematics, 13:4 (2010), 38–51 (In Russ.) | MR | Zbl

[4] V.A. Kyrov, “Functional equations in simplicial geometry”, Proceedings of Institute of Mathematics and Mechanics of Ural Branch of RAS, 16, no. 2, 2010, 149–153 (In Russ.)

[5] V.A. Kyrov, “On a class of functional-differential equations”, Bulletin of Samara State Technical University. Series Physical and Mathematical Sciences, 26:1 (2012), 31–38 (In Russ.) | DOI | MR

[6] V.A. Kyrov, “Six-dimensional Lie algebra of motions groups of three-dimensional phenomenologically symmetric geometries”, Appendix to the book: G.G. Mikhailichenko, Polymetric geometries, Novosibirsk State University Publ., Novosibirsk, 2001, 116–143 (In Russ.)

[7] V.A. Kyrov, “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI | MR | Zbl

[8] L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl

[9] L.E. El'sgol'tz, Differential equations and calculus of variations, Nauka Publ., Moscow, 1978, 424 pp. (In Russ.) | MR