Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_1_a3, author = {V. A. Kyrov}, title = {Solving of functional equations associated with the scalar product}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {30--45}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/} }
V. A. Kyrov. Solving of functional equations associated with the scalar product. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 30-45. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a3/
[1] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structures, Gorno-Altaisk State University Publ., Gorno-Altaisk, 2016, 197 pp. (In Russ.)
[2] R.A. Bogdanova, “Movements groups of two-dimensional Helmholtz geometries as solution of functional equation”, Siberian journal of industrial mathematics, 12:4 (2009), 12–22 (In Russ.) | MR | Zbl
[3] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Siberian journal of industrial mathematics, 13:4 (2010), 38–51 (In Russ.) | MR | Zbl
[4] V.A. Kyrov, “Functional equations in simplicial geometry”, Proceedings of Institute of Mathematics and Mechanics of Ural Branch of RAS, 16, no. 2, 2010, 149–153 (In Russ.)
[5] V.A. Kyrov, “On a class of functional-differential equations”, Bulletin of Samara State Technical University. Series Physical and Mathematical Sciences, 26:1 (2012), 31–38 (In Russ.) | DOI | MR
[6] V.A. Kyrov, “Six-dimensional Lie algebra of motions groups of three-dimensional phenomenologically symmetric geometries”, Appendix to the book: G.G. Mikhailichenko, Polymetric geometries, Novosibirsk State University Publ., Novosibirsk, 2001, 116–143 (In Russ.)
[7] V.A. Kyrov, “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI | MR | Zbl
[8] L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl
[9] L.E. El'sgol'tz, Differential equations and calculus of variations, Nauka Publ., Moscow, 1978, 424 pp. (In Russ.) | MR