Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_1_a2, author = {M. M. Dyshaev}, title = {On some option pricing models on illiquid markets}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {18--29}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a2/} }
M. M. Dyshaev. On some option pricing models on illiquid markets. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a2/
[1] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, J. of Political Economy, 81 (1973), 637–659 | DOI | MR
[2] F. Black, “The pricing of commodity contracts”, J. of Financial Economics, 3 (1976), 167–179 | DOI
[3] S. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, The Rev. of Financial Studies, 6:2 (1993), 327–343 | DOI
[4] R. Sircar, G. Papanicolaou, “Generalized Black — Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | Zbl
[5] P. Schónbucher, P. Wilmott, “The feedback effects of hedging in illiquid markets”, SIAM J. on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl
[6] E. Peters, Chaos and order in the capital markets: a new view of cycles, prices, and market volatility, 2 ed., John Wiley Sons, N. Y., 1996, 274 pp.
[7] H. Follmer, M. Schweizer, “A microeconomic approach to diffusion models of stock prices”, Mathematical Finance, 3:1 (1993), 1–23 | DOI | MR | Zbl
[8] M. Brennan, E. Schwartz, “Portfolio insurance and financial market equilibrium”, J. of Business, 62:4 (1989), 455–476 | DOI
[9] R. Frey, A. Stremme, “Volatility and feedback effects from dynamic hedging”, Mathematical Finance, 7 (1997), 351–374 | DOI | MR | Zbl
[10] B. Oksendal, Stochastic Differential Equations. An Introduction with Applications, 5 ed., Berlin–Heidelberg–New York–London–Paris–Tokyo–Hong Kong–Barcelona–Budapest, 2000, 332 pp. | MR
[11] R. K. Gazizov, N. H. Ibragimov, “Lie symmetry analysis of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl
[12] L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl
[13] M.M. Dyshaev , V.E. Fedorov, “Symmetry analysis and exact solutions of a nonlinear model of the financial markets theory”, Mathematical Notes of North-Eastern Federal University, 23:1(89) (2016), 28–45 (In Russ.) | MR
[14] M.M. Dyshaev , V.E. Fedorov, “Symmetries and exact solutions of a nonlinear equation of options pricing”, Ufa mathematical journal, 9:1 (2017), 29–41 (In Russ.)
[15] L. A. Bordag, A. Y. Chmakova, “Explicit solutions for a nonlinear model of financial derivatives”, International J. of Theoretical and Applied Finance, 10:1 (2007), 1–21 | DOI | MR | Zbl
[16] L. A. Bordag, R. Frey, “Pricing options in illiquid markets: symmetry reductions and exact solutions”, Nonlinear Models in Mathematical Finance: Research Trends in Option Pricing, Chapter 3, ed. M. Ehrhardt, Nova Science Publ., Inc., N. Y., 2008, 83–109 | MR
[17] L. A. Bordag, “On option-valuation in illiquid markets: invariant solutions to a nonlinear model”, Mathematical Control Theory and Finance, 2008, 71–94, Springer, Berlin ; Heidelberg | DOI | MR | Zbl
[18] L. A. Bordag, A. Mikaelyan, “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, J. Letters in Mathematical Physics, 96:1–3 (2011), 191–207 | DOI | MR | Zbl
[19] . E. Fedorov, M. M. Dyshaev, “Group classification for a general nonlinear model of option pricing”, Ural Mathematical J., 2:2 (2016), 37–44 | DOI
[20] M. M. Dyshaev, “Group analysis of a nonlinear generalization of Black–Scholes equation”, Chelyabinsk Physical and mathematical Journal, 1:3 (2016), 7–14 (In Russ.) | MR
[21] J. Board, C. Sutcliffe, The Effects of Trade Transparency in the London Stock Exchange: A Summary, Spec. Paper 67, Financial Markets Group, London School of Economics, 1995, 30 pp.