3D structure of multilayer carbon nanotubes
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 4, pp. 102-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiwall carbon nanotube structures have been investigated in the paper. As a result, it is established that there exists five types $(n,0), (n,n), (5n,n), (5n,2n), (10n,3n)$ of multiwalled carbon nanotubes, composed of nanotubes with identical chirality. Degrees of these types chirality are $k = 0, 0.4, 0.6, 0.8, 1$ (for nanotube $(n, m)$ $k$ is equal to $m / n$). The interlayer distance $\mathrm{d}002$ for each of the subtypes are constants $0.3528$, $0.35927$, $0.34842$, $0.34174$ and $0.33948$ nm. For multilayer nanotubes composed of tubes with arbitrary chiralities intertubes distances are no constant and vary over a wide range from $0.3354$ to $0.345$ nm. Calculations of intertubes interactions, performed by the atom-atom potential method showed that the difference in the binding energies in various mutual shifts and turns of nested nanotubes is negligible (less than $1\%$ of the total binding energy). It should lead to a lack of an order in their mutual arrangement.
Keywords: multi-walled carbon nanotube, structure, molecular mechanics, atom-atom potential method, binding energy.
@article{CHFMJ_2016_1_4_a6,
     author = {E. A. Belenkov},
     title = {3D structure of multilayer carbon nanotubes},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {102--111},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a6/}
}
TY  - JOUR
AU  - E. A. Belenkov
TI  - 3D structure of multilayer carbon nanotubes
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 102
EP  - 111
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a6/
LA  - ru
ID  - CHFMJ_2016_1_4_a6
ER  - 
%0 Journal Article
%A E. A. Belenkov
%T 3D structure of multilayer carbon nanotubes
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 102-111
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a6/
%G ru
%F CHFMJ_2016_1_4_a6
E. A. Belenkov. 3D structure of multilayer carbon nanotubes. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 4, pp. 102-111. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a6/

[1] E. A. Belenkov, V. A. Greshnyakov, “Classification of structural modifications of carbon”, Physics of the Solid State, 55:8 (2013), 1754–1764 | DOI

[2] N. Iwashita, M. Inagaki, “Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials”, Carbon, 31:7 (1993), 1107–1113 | DOI

[3] E. A. Belenkov, “Formation of graphite structure in carbon crystallites”, Inorganic Materials, 37:9 (2001), 928–934 | DOI

[4] E. A. Belenkov , V. V. Mavrinsky, “Crystal structure of a perfect carbine”, Crystallography Reports, 53:1 (2008), 83–87 | DOI

[5] V. A. Tyumentsev, E A. Belenkov, G. P. Shveikin, S. A. Podkopaev, “The effects of sulfur and other impurities on carbon-graphite transitions”, Carbon, 36:7–8 (1998), 845–853 | DOI

[6] E A. Belenkov, E A. Karnaukhov, “Influence of crystal dimensions on interatomic distances in dispersed carbon”, Physics of the Solid State, 41:4 (1999), 672–675 | DOI

[7] E A. Belenkov, E A. Kochengin, “Structure and electronic properties of crystals consisting of graphene layers L6, L4–8, L3–12, and L4–6–12”, Physics of the Solid State, 57:10 (2015), 2126–2133 | DOI

[8] M. Monthioux, J. G. Lavin, “The graphitizability of fullerenes and related texture”, Carbon, 32:2 (1994), 335–343 | DOI

[9] M. Miki-Yoshida [et al.], “High resolution electron microscopy studies in carbon soots”, Carbon, 32:2 (1994), 231–246 | DOI

[10] K. Tanaka, H. Aoki, H. Ago, T. Yamabe, K. Okahara, “Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes”, Carbon, 35:1 (1997), 121–125 | DOI

[11] E. A. Belenkov, F. K. Shabiev, “Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis”, Letters on Materials, 5:4 (20) (2015), 459–462 | DOI

[12] M. M. Brzhezinskaya , E. M. Baitinger ,E. A. Belenkov, L. M. Svirskaya, “Defect electron states in carbon nanotubes and graphite from the NEXAFS spectroscopy data”, Physics of the Solid State, 55:4 (2013), 850–854 | DOI

[13] E. A. Belenkov, “Patterns of structural ordering of multiwalled carbon nanotubes”, Proceedings of the Chelyabinsk Scientific Center of UB RAS, 2001, no. 1, 51–60 (In Russ.)

[14] A. V. Eletskii, “Carbon nanotubes”, Uspekhi — Physics, 40 (1997), 899–924 | DOI | DOI

[15] Yu. E. Lozovik , A. M. Popov, “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones”, Uspekhi — Physics, 40 (1997), 717–737 | DOI

[16] E. A. Belenkov, “Modeling of formation of a crystal structure in a carbon fiber”, Crystallography Reports, 44:5 (1999), 749–754

[17] A. I. Kitaigorodsky, Molecular crystals and Molecules, Academic Press, New York, 1973, 553 pp.

[18] E. I. Belenkova, “Simulation of carbon materials structural transformation due to a changing of nanocrystals sizes”, New technologies in materials science, Bashkir State University Publ., Ufa, 2015, 180–181 (In Russ.)

[19] E. A. Belenkov, A. I. Sheinkman, “Modeling the graphitization of amorphous carbon”, Soviet Physics Journal, 34:10 (1991), 903–905 | DOI