Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_3_a7, author = {T. V. Popova and A. E. Mayer and K. V. Khishchenko}, title = {Dynamic deformation of {PMMA:} the influence of viscoelastic properties}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {92--107}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/} }
TY - JOUR AU - T. V. Popova AU - A. E. Mayer AU - K. V. Khishchenko TI - Dynamic deformation of PMMA: the influence of viscoelastic properties JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 92 EP - 107 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/ LA - ru ID - CHFMJ_2016_1_3_a7 ER -
%0 Journal Article %A T. V. Popova %A A. E. Mayer %A K. V. Khishchenko %T Dynamic deformation of PMMA: the influence of viscoelastic properties %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 92-107 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/ %G ru %F CHFMJ_2016_1_3_a7
T. V. Popova; A. E. Mayer; K. V. Khishchenko. Dynamic deformation of PMMA: the influence of viscoelastic properties. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 92-107. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/
[1] G. I. Kanel, A. S. Garkushin, “Shock response of magnesium single crystals at normal and elevated temperatures”, J. of Applied Physics, 116 (2014), 143504 | DOI
[2] G. I. Kanel, S. V. Razorenov, “Deformation resistance and fracture of iron over a wide strain rate range”, Physics of Solid State, 2014, no. 654, 159–1573
[3] S. V. Razorenov, G. V. Garkushin, “Shock-wave response of Ni-Ti shape memory alloys in the transformation temperature range”, v. 1195, AIP Conf. Proc., 2009, 1027 | DOI
[4] G. Garkushin, G. I. Kanel, S. V. Razorenov, “The resistance to deformation and facture of magnesium ma2-1 under shock-wave loading at 293 K and 823 K of the temperature”, v. 1426, AIP Conf. Proc., 2012, 935–938 | DOI
[5] G. I. Kanel, W. J. Nellis, A. S. Savinykh, S. V. Razorenov, A. M. Rajendran, “Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa”, J. of Applied Physics, 106 (2009), 043524 | DOI
[6] G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, Shock-Wave Phenomena in Condensed Media, Janus-K Publ., Moscow, 1996, 408 pp. (In Russ.)
[7] V. A. Glukhikh, V. A. Belyakov, A. B. Mineev, Physical and Technical Foundations of the Controlled Thermonuclear Fusion, St. Petersburg State Polytechnical University Press Publ., St. Petersburg, 2006, 348 pp. (In Russ.)
[8] N. A. Adamenko, A. V. Kazurov, A. V. Fetisov, G. V. Agafonova, “Preparation of polymer nanocomposites by explosive processing”, Nanotechnology, 45 (2009), 85–92
[9] T. P. Liddiard Jr., “The compression of polymethyl methacrylate by low amplitude shock waves”, Fourth Symp. on Detonation, 1965, 214–221
[10] L. M. Barker, R. E. Hollenbach, “Shock-Wave Studies of PMMA, Fused Silica, and Sapphire”, J. of Applied Physics, 41:10 (1970), 4208–4226 | DOI
[11] I. P. Parkhomenko, A. V. Utkin, “Spall strength of plexiglass”, Investigations of material properties under extremal conditions, IVTAN Publ., Moscow, 1990, 126–130 (In Russ.)
[12] M. S. Arzhakov, G. M. Lukovkin, S. A. Arzhakov, “Features of the physicomechanical behavior of polymethyl methacrylat under compression”, Doklady Chemistry, 382:1–3 (2002), 1–4 | DOI
[13] A. M. Kugotova, B. I. Kunizhev, “Comparative study of the destruction of polymethylmethacrylate by the high-speed impact and by the impulse laser influence”, Proceedings of Kabardino-Balkaria State University, 4:3 (2014), 44–47 (In Russ.)
[14] V. N. Genkin, V. A. Izvozchikova, M. S. Kitai, M. Yu. Myl'nikov, “Laser damage to plasticized polymethylmethacrylate”, Soviet Journal of Quantum Electronics, 12:11 (1985), 1504–1508 | DOI
[15] S. A. Abrosimov [et al.]., “Study of mechanical properties of aluminum, AMg6M alloy, and polymethyl methacrylate at high strain rates under the action of picosecond laser radiation”, Doklady Physics, 57 (2012), 64–66 | DOI
[16] S. A. Abrosimov [et al.]., “Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse”, Quantum Electronics, 43:3 (2013), 246–251 | DOI
[17] A. A. Geras’kin [et al.], “Specific features of spallation processes in polymethylmethacrylate”, Contributions to Plasma Physics, 49:7 (2009), 451-454 | DOI
[18] Ya. B. Zel’dovich, Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 1967, 478 pp.
[19] R. G. McQueen, S. P. Marsh, “Ultimate Yield Strength of Copper”, J. of Applied Physics, 33:2 (1962), 654–665 | DOI
[20] A. E. Mayer, K. V. Khishchenko, P. R. Levashov, P. N. Mayer, “Modeling of plasticity and fracture of metals at shock loading”, J. of Applied Physics, 113 (2013), 193508 | DOI
[21] T. V. Popova, A. E. Mayer, K. V. Khishchenko, “Numerical investigations of shock wave propagation in polymethylmethacrylate”, J. of Physics, 653, Conf. Ser. (2015)
[22] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, v. 6, 2nd edition, Heinemann, Butterworth, 1987, 552 pp. | MR | MR
[23] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, v. 7, 3rd edition, Heinemann, Butterworth, 1986, 172 pp. | MR | MR
[24] L. A. Merzhievsky, L. A. Voronin, “Modeling of deformation and fracture of polymers using Maxwellian approach”, Proceedings of the Altai State University, 1-1 (2012), 95–98 (In Russ.)
[25] L. A. Merzhievsky, L. A. Voronin, “Modeling of shock-wave deformation of polymethyl metacrylate”, Combustion, Explosion and Shock Waves, 48 (2012), 226–235 | DOI | MR
[26] I. A. Birger, R. R. Mavlyutov, Strength of Materials, Nauka Publ., Moscow, 1986, 560 pp. (In Russ.)
[27] I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, “A model of wide-range equations of state of polymeric materials at high energy densities”, Chemical Physics Rep., 14:1–3 (1995), 51–57
[28] K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, “Equations of state for organic compounds over wide range of densities and pressures”, Shock Compression of Condensed Matter – 1995, eds. S. C. Schmidt, W. C. Tao, AIP Press, New York, 1996, 125–128
[29] A. P. Yalovets, “Calculation of fluid flow under the influence of intense beams of charged particles”, Journal of Applied Mechanics and Technical Physics, 38:1 (1997), 137–150 | DOI | Zbl
[30] G. I. Kanel, V. E. Fortov, S. V. Razorenov, “Shock waves in condensed-state physics”, Physics-Uspekhi, 50 (2007), 771–791 | DOI | DOI
[31] M. Farshad, M. W. Wildenberg, P. Fliieler, “Determination of shear modulus and Poisson's ratio of polymers and foams by the anticlastic plate-bending method”, Materials and Structures, 30 (1997), 377–382 | DOI
[32] A. A. Bakanova, I. P. Dudoladov, R. F. Trunin, “Compression of alkali metals by strong shock waves”, Physics of Solid State, 7 (1965), 1615
[33] R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, W. J. Carter, “The equation of state of solids from shock wave studies”, High Velocity Impact Phenomena, ed. R. Kinslow, Academic Press, New York, 1970, 293–417 | DOI
[34] M. Van Thiel, J. Shaner, E. Salinas, Compendium of Shock Wave Data. Compendium Index, Lawrence Livermore National Lab Ca, 1977, 528–539
[35] S. P. Marsh, LASL Shock Hugoniot Data, Los Alamos Series on Dynamic Material Properties, Univ. California Press, Berkeley, 1980, 658 pp.
[36] R. F. Trunin, “Shock compressibility of condensed matters in strong shock waves caused by un-derground nuclear explosions”, Physics–Uspekhi, 37 (1994), 1123–1145 | DOI
[37] L. A. Maksanova, A. Zh. Oyurova, Polymer compounds and their use, ESSTU Publ., Ulan-Ude, 2005, 356 pp. (In Russ.)
[38] K. V. Khishchenko, P. R. Levashov, I. V. Lomonosov, Shock Wave Database (accessed 21.08.2016 ) http://www.ihed.ras.ru/rusbank