Dynamic deformation of PMMA: the influence of viscoelastic properties
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 92-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier using 1D simulation within the framework of Maxwell model we showed that the viscoelastic properties of PMMA, on the one hand, affect velocity of weak shock waves, on the other hand, have a little influence on the compression pulse attenuation. In this paper we generalize the model of PMMA deformation onto 2D case and use it for further investigations. We perform 2D simulations of dynamics of a diverging shock wave generated by a pressure pulse applied to PMMA surface and high-velocity impact of PMMA plates. These simulations also show that the viscoelastic properties slightly affect the compression pulse dynamics in PMMA, but substantially determine the shape of colliding plates. The obtained results mean that calculations within the hydrodynamic approximation can be used for interpretation of the experiments on the rear spallation of PMMA.
Keywords: polymeric material, polymethylmethacrylate, shock wave, viscoelastic media, Maxwell model.
@article{CHFMJ_2016_1_3_a7,
     author = {T. V. Popova and A. E. Mayer and K. V. Khishchenko},
     title = {Dynamic deformation of {PMMA:} the influence of viscoelastic properties},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {92--107},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/}
}
TY  - JOUR
AU  - T. V. Popova
AU  - A. E. Mayer
AU  - K. V. Khishchenko
TI  - Dynamic deformation of PMMA: the influence of viscoelastic properties
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 92
EP  - 107
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/
LA  - ru
ID  - CHFMJ_2016_1_3_a7
ER  - 
%0 Journal Article
%A T. V. Popova
%A A. E. Mayer
%A K. V. Khishchenko
%T Dynamic deformation of PMMA: the influence of viscoelastic properties
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 92-107
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/
%G ru
%F CHFMJ_2016_1_3_a7
T. V. Popova; A. E. Mayer; K. V. Khishchenko. Dynamic deformation of PMMA: the influence of viscoelastic properties. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 92-107. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a7/

[1] G. I. Kanel, A. S. Garkushin, “Shock response of magnesium single crystals at normal and elevated temperatures”, J. of Applied Physics, 116 (2014), 143504 | DOI

[2] G. I. Kanel, S. V. Razorenov, “Deformation resistance and fracture of iron over a wide strain rate range”, Physics of Solid State, 2014, no. 654, 159–1573

[3] S. V. Razorenov, G. V. Garkushin, “Shock-wave response of Ni-Ti shape memory alloys in the transformation temperature range”, v. 1195, AIP Conf. Proc., 2009, 1027 | DOI

[4] G. Garkushin, G. I. Kanel, S. V. Razorenov, “The resistance to deformation and facture of magnesium ma2-1 under shock-wave loading at 293 K and 823 K of the temperature”, v. 1426, AIP Conf. Proc., 2012, 935–938 | DOI

[5] G. I. Kanel, W. J. Nellis, A. S. Savinykh, S. V. Razorenov, A. M. Rajendran, “Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa”, J. of Applied Physics, 106 (2009), 043524 | DOI

[6] G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, Shock-Wave Phenomena in Condensed Media, Janus-K Publ., Moscow, 1996, 408 pp. (In Russ.)

[7] V. A. Glukhikh, V. A. Belyakov, A. B. Mineev, Physical and Technical Foundations of the Controlled Thermonuclear Fusion, St. Petersburg State Polytechnical University Press Publ., St. Petersburg, 2006, 348 pp. (In Russ.)

[8] N. A. Adamenko, A. V. Kazurov, A. V. Fetisov, G. V. Agafonova, “Preparation of polymer nanocomposites by explosive processing”, Nanotechnology, 45 (2009), 85–92

[9] T. P. Liddiard Jr., “The compression of polymethyl methacrylate by low amplitude shock waves”, Fourth Symp. on Detonation, 1965, 214–221

[10] L. M. Barker, R. E. Hollenbach, “Shock-Wave Studies of PMMA, Fused Silica, and Sapphire”, J. of Applied Physics, 41:10 (1970), 4208–4226 | DOI

[11] I. P. Parkhomenko, A. V. Utkin, “Spall strength of plexiglass”, Investigations of material properties under extremal conditions, IVTAN Publ., Moscow, 1990, 126–130 (In Russ.)

[12] M. S. Arzhakov, G. M. Lukovkin, S. A. Arzhakov, “Features of the physicomechanical behavior of polymethyl methacrylat under compression”, Doklady Chemistry, 382:1–3 (2002), 1–4 | DOI

[13] A. M. Kugotova, B. I. Kunizhev, “Comparative study of the destruction of polymethylmethacrylate by the high-speed impact and by the impulse laser influence”, Proceedings of Kabardino-Balkaria State University, 4:3 (2014), 44–47 (In Russ.)

[14] V. N. Genkin, V. A. Izvozchikova, M. S. Kitai, M. Yu. Myl'nikov, “Laser damage to plasticized polymethylmethacrylate”, Soviet Journal of Quantum Electronics, 12:11 (1985), 1504–1508 | DOI

[15] S. A. Abrosimov [et al.]., “Study of mechanical properties of aluminum, AMg6M alloy, and polymethyl methacrylate at high strain rates under the action of picosecond laser radiation”, Doklady Physics, 57 (2012), 64–66 | DOI

[16] S. A. Abrosimov [et al.]., “Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse”, Quantum Electronics, 43:3 (2013), 246–251 | DOI

[17] A. A. Geras’kin [et al.], “Specific features of spallation processes in polymethylmethacrylate”, Contributions to Plasma Physics, 49:7 (2009), 451-454 | DOI

[18] Ya. B. Zel’dovich, Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 1967, 478 pp.

[19] R. G. McQueen, S. P. Marsh, “Ultimate Yield Strength of Copper”, J. of Applied Physics, 33:2 (1962), 654–665 | DOI

[20] A. E. Mayer, K. V. Khishchenko, P. R. Levashov, P. N. Mayer, “Modeling of plasticity and fracture of metals at shock loading”, J. of Applied Physics, 113 (2013), 193508 | DOI

[21] T. V. Popova, A. E. Mayer, K. V. Khishchenko, “Numerical investigations of shock wave propagation in polymethylmethacrylate”, J. of Physics, 653, Conf. Ser. (2015)

[22] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, v. 6, 2nd edition, Heinemann, Butterworth, 1987, 552 pp. | MR | MR

[23] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, v. 7, 3rd edition, Heinemann, Butterworth, 1986, 172 pp. | MR | MR

[24] L. A. Merzhievsky, L. A. Voronin, “Modeling of deformation and fracture of polymers using Maxwellian approach”, Proceedings of the Altai State University, 1-1 (2012), 95–98 (In Russ.)

[25] L. A. Merzhievsky, L. A. Voronin, “Modeling of shock-wave deformation of polymethyl metacrylate”, Combustion, Explosion and Shock Waves, 48 (2012), 226–235 | DOI | MR

[26] I. A. Birger, R. R. Mavlyutov, Strength of Materials, Nauka Publ., Moscow, 1986, 560 pp. (In Russ.)

[27] I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, “A model of wide-range equations of state of polymeric materials at high energy densities”, Chemical Physics Rep., 14:1–3 (1995), 51–57

[28] K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, “Equations of state for organic compounds over wide range of densities and pressures”, Shock Compression of Condensed Matter – 1995, eds. S. C. Schmidt, W. C. Tao, AIP Press, New York, 1996, 125–128

[29] A. P. Yalovets, “Calculation of fluid flow under the influence of intense beams of charged particles”, Journal of Applied Mechanics and Technical Physics, 38:1 (1997), 137–150 | DOI | Zbl

[30] G. I. Kanel, V. E. Fortov, S. V. Razorenov, “Shock waves in condensed-state physics”, Physics-Uspekhi, 50 (2007), 771–791 | DOI | DOI

[31] M. Farshad, M. W. Wildenberg, P. Fliieler, “Determination of shear modulus and Poisson's ratio of polymers and foams by the anticlastic plate-bending method”, Materials and Structures, 30 (1997), 377–382 | DOI

[32] A. A. Bakanova, I. P. Dudoladov, R. F. Trunin, “Compression of alkali metals by strong shock waves”, Physics of Solid State, 7 (1965), 1615

[33] R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, W. J. Carter, “The equation of state of solids from shock wave studies”, High Velocity Impact Phenomena, ed. R. Kinslow, Academic Press, New York, 1970, 293–417 | DOI

[34] M. Van Thiel, J. Shaner, E. Salinas, Compendium of Shock Wave Data. Compendium Index, Lawrence Livermore National Lab Ca, 1977, 528–539

[35] S. P. Marsh, LASL Shock Hugoniot Data, Los Alamos Series on Dynamic Material Properties, Univ. California Press, Berkeley, 1980, 658 pp.

[36] R. F. Trunin, “Shock compressibility of condensed matters in strong shock waves caused by un-derground nuclear explosions”, Physics–Uspekhi, 37 (1994), 1123–1145 | DOI

[37] L. A. Maksanova, A. Zh. Oyurova, Polymer compounds and their use, ESSTU Publ., Ulan-Ude, 2005, 356 pp. (In Russ.)

[38] K. V. Khishchenko, P. R. Levashov, I. V. Lomonosov, Shock Wave Database (accessed 21.08.2016 ) http://www.ihed.ras.ru/rusbank