Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_3_a3, author = {I. V. Tikhonov and Yu. V. Gavris and T. Z. Adzhieva}, title = {Structure of solutions for model inverse problem for the heat equation in classes of exponential growth functions}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {37--62}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a3/} }
TY - JOUR AU - I. V. Tikhonov AU - Yu. V. Gavris AU - T. Z. Adzhieva TI - Structure of solutions for model inverse problem for the heat equation in classes of exponential growth functions JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 37 EP - 62 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a3/ LA - ru ID - CHFMJ_2016_1_3_a3 ER -
%0 Journal Article %A I. V. Tikhonov %A Yu. V. Gavris %A T. Z. Adzhieva %T Structure of solutions for model inverse problem for the heat equation in classes of exponential growth functions %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 37-62 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a3/ %G ru %F CHFMJ_2016_1_3_a3
I. V. Tikhonov; Yu. V. Gavris; T. Z. Adzhieva. Structure of solutions for model inverse problem for the heat equation in classes of exponential growth functions. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 37-62. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a3/
[1] A. Tychonoff, “Théorèmes d'unicité pour l'équation de la chaleur”, Recueil Mathématique, 42:2 (1935), 199–216 | Zbl
[2] A. N. Tychonov, Collection of science works in 10 vol., v. II, Mathematics. Pt. 2. Computational mathematics, 1956–1979. Mathematical physics, 1933–1948, eds. T.A. Sushkevich, A.V. Gulin, Nauka Publ., Moscow, 2009, 590 pp. (In Russ.)
[3] I. V. Tikhonov, Yu. S. Eydelman, “The unique solvability of a two-point inverse problem for an abstract differential equation with an unknown parameter”, Differential Equations, 36:8 (2000), 1256–1258 | DOI | MR | Zbl
[4] I. V. Tikhonov, “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izvestiya: Mathematics, 67:2 (2003), 333–363 | DOI | DOI | MR | Zbl
[5] A. Yu. Popov, I. V. Tikhonov, “Exponential classes of uniqueness in heat conduction problems”, Doklady Mathematics, 67:2 (2003), 234–236 | MR | Zbl
[6] A. Yu. Popov, I. V. Tikhonov, “Uniqueness classes in a time-nonlocal problem for the heat equation and complex eigenfunctions of the Laplace operator”, Differential Equations, 40:3 (2004), 428–437 | DOI | MR | Zbl
[7] A. Yu. Popov, I. V. Tikhonov, “Razreshimost zadachi teploprovodnosti s nelokalnym usloviem srednego po vremeni”, Dokl. Akad. nauk, 398:6 (2004), 738–742 | MR
[8] A. Yu. Popov, I. V. Tikhonov, “Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages”, Sbornik: Mathematics, 196:9 (2005), 1319–1348 | DOI | DOI | MR | Zbl
[9] A. M. Denisov, Introduction into theory of inverse problems, MSU Publ., Moscow, 1994, 208 pp. (In Russ.)
[10] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, N.Y.,–Basel, 200, xiii+709 pp. | MR | Zbl
[11] T. Carleman, Les fonctions quasi analytiques. Leçons professées au Collége de France, (Collection de monographies sur la théoriedes fonctions publiée sous la direction de m. Émile Borel, Gauthier-Villars, Paris, 1926, 116 pp.
[12] S. Mandel'broyt, Quasianalytic classes of functions, ONTI Publ., Leningrad—Moscow, 1937, 108 pp. (In Russ.)
[13] L. Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin–Heidelberg–N.Y.–Tokyo, 1983, ix+391 pp. | MR | MR
[14] V. P. Mikhailov, Partial differential equations, Mir Publ., Moscow, 1978, 396 pp. | MR | MR
[15] A. F. Leont'yev, Entire functions. Series of exponents, Nauka Publ, Moscow, 1983, 176 pp. (In Russ.) | MR
[16] D. V. Widder, “Positive temperatures on an infinite rod”, Trans. Amer. Math. Soc., 55:1 (1944), 85–95 | DOI | MR | Zbl
[17] D. V. Widder, The heat equation, Academic Press, N.Y.–San Francisco–London, 1975, xvi+267 pp. | MR | Zbl
[18] E. Goursat, Cours d'Analyse mathématique, v. III, Intégrales infiniment voisines. Équations aux dérivées partielles du seconde ordre. Équations intégrales. Calcul des variations, Troisième édition, 1923
[19] E. Holmgren, “Sur l'équation $\displaystyle{\frac{\partial^2 z}{\partial x^2}=\frac{\partial z}{\partial y}}$”, Comptes Rendus de l'Académie des Sciences, 145 (1907), 1401–1403
[20] E. Holmgren, “Sur l'équation de la propagation de la chaleur”, Arkiv för matematik, astronomi och fysik, 4:14 (1908), 1–14
[21] E. Holmgren, “Sur les solutions quasianalytiques de l'équation de la chaleur”, Arkiv för matematik, astronomi och fysik, 18:9 (1924), 1–9
[22] S. Täcklind, “Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique”, Nova Acta Regiae Societatis Scientiarum Upsaliensis. Ser. IV, 10:3 (1936), 1–57 | Zbl
[23] P. C. Rosenbloom, D. V. Widder, “A temperature function which vanishes initially”, The American Mathematical Monthly, 65:8 (1958), 607–609 | DOI | MR | Zbl
[24] I. V. Tikhonov, “Concepts of monotoneness in inverse problem for abstract differential equation”, Integral transformations and special functions, 2:1 (2001), 119–128 (In Russ.)
[25] I. V. Tikhonov, “tructural properties of null-solutions of abstract Cauchy problem”, Integral transformations and special functions, 3:1 (2002), 22–38 (In Russ.) | MR
[26] I. V. Tikhonov, Yu. S. Eydelman, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Mathematical Notes, 77:1 (2005), 246–262 | DOI | MR | Zbl