Start control problems for fractional order evolution equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 15-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique solvability conditions are found for the Cauchy initial value problem to linear and nonlinear evolution equations with the Gerasimov — Caputo fractional derivatives in Banach spaces. For start control problems with various quality functionals to systems that described by such equations, solution existence theorems are proved, and in some linear cases the uniqueness of the problem solution is proved also. Abstract results are demonstrated on problems for the linearized Oskolkov — Benjamin — Bona — Mahony — Burgers equation and for the nonlinear equation of semiconductors metastable states.
Keywords: evolution equation, Gerasimov — Caputo fractional derivative, strong solution, optimal control, start control.
@article{CHFMJ_2016_1_3_a2,
     author = {M. V. Plekhanova},
     title = {Start control problems for fractional order evolution equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {15--36},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Start control problems for fractional order evolution equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 15
EP  - 36
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/
LA  - ru
ID  - CHFMJ_2016_1_3_a2
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Start control problems for fractional order evolution equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 15-36
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/
%G ru
%F CHFMJ_2016_1_3_a2
M. V. Plekhanova. Start control problems for fractional order evolution equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 15-36. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/

[1] V. V. Uchaykin, Fractional derivatives method, Artishok Publ., Ulyanovsk, 2008, 510 pp. (In Russ.)

[2] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011, 450 pp. | MR

[3] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven Univ. of Technology, Univ. Press Facilities, 2001, 107 pp. | MR | Zbl

[4] A. V. Pskhu, Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR

[5] M. V. Plekhanova, A. F. Islamova, “Issledovanie linearizovannoi sistemy uravnenii Bussineska metodami teorii vyrozhdennykh polugrupp”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika., 20 (158):11 (2009), 62–69 (In Russ.) | MR

[6] V. E. Fedorov, D. M. Gordievskikh, M. V. Plekhanova, “quations in Banach spaces with a degenerate operator under a fractional derivative”, Differential equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl

[7] M. V. Plekhanova, “Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative”, Discrete and Continuous Dynamical systems. Series S., 9:3 (2016), 833–847 | DOI | MR

[8] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upr., 2004, no. 5, 40–44 | MR

[9] M. V. Plekhanova, V. E. Fedorov, “An optimality criterion in a control problem for a Sobolev-type linear equation”, Journal of Computer and System Sciences International, 46:2 (2007), 248–254 | DOI | MR | Zbl

[10] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems, which are not solved with respect to the time derivative.”, Izvestiya Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl

[11] A. F. Islamova, “Minimization of functionals with a weak norm on solutions of a degenerate linear equation”, Bulletin of South Ural State University. Mathematical modelling and programming, 17 (234) (2011), 36–45 (In Russ.) | Zbl

[12] M. V. Plekhanova, “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Materials Science Forum, 845 (2016), 170–173 | DOI

[13] M. V. Plekhanova, “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Mathematical methods in the applied sciences | DOI

[14] A. V. Fursikov, Optimal control for distributed systems. Theory and applications, Nauchnaya Kniga Publ., Novosibirsk, 1999, 350 pp. (In Russ.)

[15] A. N. Gerasimov, “Generalization of linear deformation laws and their application to internal friction problems”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.) | MR

[16] M. Caputo, “Linear model of dissipation whose $Q$ is almost frequency independent”, Geophysical J. of the Royal Astronomical Soc., 13 (1967), 383–393 | DOI

[17] T. B. Benjamin, J. L. Bona, J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philosophical Transactions of the Royal Soc. A., 272:1220 (1972), 47–78 | DOI | MR | Zbl

[18] A. P. Oskolkov, “To the stability theory for the solutions of the semilinear dissipative Sobolev type equations”, Notes of scientific seminars of POMI, 200, 1992, 139–148 (In Russ.)

[19] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, Yu. D. Pletner, Linear and nonlinear Sobolev type equations, Fizmatlit Publ., Moscow, 2007, 736 pp. (In Russ.)