Start control problems for fractional order evolution equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 15-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Unique solvability conditions are found for the Cauchy initial value problem to linear and nonlinear evolution equations with the Gerasimov — Caputo fractional derivatives in Banach spaces. For start control problems with various quality functionals to systems that described by such equations, solution existence theorems are proved, and in some linear cases the uniqueness of the problem solution is proved also. Abstract results are demonstrated on problems for the linearized Oskolkov — Benjamin — Bona — Mahony — Burgers equation and for the nonlinear equation of semiconductors metastable states.
Keywords:
evolution equation, Gerasimov — Caputo fractional derivative, strong solution, optimal control, start control.
@article{CHFMJ_2016_1_3_a2,
author = {M. V. Plekhanova},
title = {Start control problems for fractional order evolution equations},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {15--36},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/}
}
M. V. Plekhanova. Start control problems for fractional order evolution equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 15-36. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a2/