Group analysis of a nonlinear generalization for Black~--- Scholes equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Group classification is obtained for an equations family with a free parameter that contains Black — Scholes equation as a partial case. A five-dimensional group of equivalence transformations is calculated and three-dimensional principal Lie algebras in cases of two free element specifications were found. Optimal subalgebras systems and corresponding invariant solutions or invariant submodels are calculated for every Lie algebra.
Keywords: nonlinear partial differential equation, nonlinear Black — Scholes equation, Sircar — Papanicolaou equation, Schönbucher — Wilmott equation, group analysis, invariant solution, invariant submodel.
@article{CHFMJ_2016_1_3_a1,
     author = {M. M. Dyshaev},
     title = {Group analysis of a nonlinear generalization for {Black~---} {Scholes} equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/}
}
TY  - JOUR
AU  - M. M. Dyshaev
TI  - Group analysis of a nonlinear generalization for Black~--- Scholes equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 7
EP  - 14
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/
LA  - ru
ID  - CHFMJ_2016_1_3_a1
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%T Group analysis of a nonlinear generalization for Black~--- Scholes equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 7-14
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/
%G ru
%F CHFMJ_2016_1_3_a1
M. M. Dyshaev. Group analysis of a nonlinear generalization for Black~--- Scholes equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 7-14. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/

[1] F. Black, M. Sholes, “The pricing of options and corporate liabilities”, J. of Political Economy, 81 (1973), 637–659 | DOI | MR

[2] K. R. Sircar, G. Papanicolaou, “General Black–Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5 (1998) | Zbl

[3] P. Schönbucher, P. Wilmott, “The feedback effect of hedging in illiquid markets”, SIAM J. on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl

[4] L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl

[5] R. K. Gazizov, N. H. Ibragimov, “Lie symmetry analysis of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl

[6] L. A. Bordag, A. Y. Chmakova, “Explicit solutions for a nonlinear model of financial derivatives”, Intern. J. of Theoretical and Applied Finance, 10:1 (2007), 1–21 | DOI | MR | Zbl

[7] L. A. Bordag, A. Mikaelyan, “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, J. Letters in Mathematical Physics, 96:1–3 (2011), 191–207 | DOI | MR | Zbl