Mots-clés : Schönbucher — Wilmott equation, invariant solution
@article{CHFMJ_2016_1_3_a1,
author = {M. M. Dyshaev},
title = {Group analysis of a nonlinear generalization for {Black~{\textemdash}} {Scholes} equation},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {7--14},
year = {2016},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/}
}
M. M. Dyshaev. Group analysis of a nonlinear generalization for Black — Scholes equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 7-14. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/
[1] F. Black, M. Sholes, “The pricing of options and corporate liabilities”, J. of Political Economy, 81 (1973), 637–659 | DOI | MR
[2] K. R. Sircar, G. Papanicolaou, “General Black–Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5 (1998) | Zbl
[3] P. Schönbucher, P. Wilmott, “The feedback effect of hedging in illiquid markets”, SIAM J. on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl
[4] L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl
[5] R. K. Gazizov, N. H. Ibragimov, “Lie symmetry analysis of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl
[6] L. A. Bordag, A. Y. Chmakova, “Explicit solutions for a nonlinear model of financial derivatives”, Intern. J. of Theoretical and Applied Finance, 10:1 (2007), 1–21 | DOI | MR | Zbl
[7] L. A. Bordag, A. Mikaelyan, “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, J. Letters in Mathematical Physics, 96:1–3 (2011), 191–207 | DOI | MR | Zbl