Group analysis of a nonlinear generalization for Black~--- Scholes equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 7-14
Voir la notice de l'article provenant de la source Math-Net.Ru
Group classification is obtained for an equations family with a free parameter that contains Black — Scholes equation as a partial case. A five-dimensional group of equivalence transformations is calculated and three-dimensional principal Lie algebras in cases of two free element specifications were found. Optimal subalgebras systems and corresponding invariant solutions or invariant submodels are calculated for every Lie algebra.
Keywords:
nonlinear partial differential equation, nonlinear Black — Scholes equation, Sircar — Papanicolaou equation, Schönbucher — Wilmott equation, group analysis, invariant solution, invariant submodel.
@article{CHFMJ_2016_1_3_a1,
author = {M. M. Dyshaev},
title = {Group analysis of a nonlinear generalization for {Black~---} {Scholes} equation},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {7--14},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/}
}
M. M. Dyshaev. Group analysis of a nonlinear generalization for Black~--- Scholes equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 7-14. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a1/