A note on semilinear degenerate relaxation equations associated with abstract differential operators
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 85-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is to prove some new results on semilinear degenerate relaxation equations associated with abstract differential operators. In order to do that, we use the Fourier multiplier techniques.
Keywords: abstract semilinear degenerate relaxation differential equation, Mittag-Leffler function, Caputo time-fractional derivative, $(\alpha,\alpha,\overline{P_{1}(A)},\overline{P_{2}(A)},C)$-resolvent family, abstract differential operator.
@article{CHFMJ_2016_1_2_a8,
     author = {M. Kosti\'c},
     title = {A note on semilinear degenerate relaxation equations associated with abstract differential operators},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/}
}
TY  - JOUR
AU  - M. Kostić
TI  - A note on semilinear degenerate relaxation equations associated with abstract differential operators
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 85
EP  - 93
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/
LA  - en
ID  - CHFMJ_2016_1_2_a8
ER  - 
%0 Journal Article
%A M. Kostić
%T A note on semilinear degenerate relaxation equations associated with abstract differential operators
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 85-93
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/
%G en
%F CHFMJ_2016_1_2_a8
M. Kostić. A note on semilinear degenerate relaxation equations associated with abstract differential operators. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/

[1] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis,, Eindhoven University of Technology, Eindhoven, 2001, iv+107 pp. | MR

[2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. | MR | Zbl

[3] A. A. Kilbas, H. M. Srivastava , J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Science B.V., Amsterdam, 2006, 540 pp. | MR

[4] M. Kostić, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Science Publishers, Boca Raton, New York, 2015, 484 pp. | MR

[5] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999, 340 pp. | MR | Zbl

[6] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag, Basel, 1993, 366 pp. | MR | Zbl

[7] S. G. Samko, A. A. Kilbas, O. I. Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993, 1006 pp. | MR | Zbl

[8] R. W. Carroll, R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976, 322 pp. | MR

[9] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Chapman and Hall/CRC Pure and Applied Mathematics Publ., New York, 1998, 336 pp. | MR

[10] Melnikova I.V., Filinkov A.I., Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC, Boca Raton, 2001, 264 pp. | MR | Zbl

[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems, 42, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR

[12] R.-N. Wang,D.-H Chen, T.-J. Xiao, “Abstract fractional Cauchy problems with almost sectorial operators”, Journal of Differential Equations, 252 (2012), 202–235 | DOI | MR | Zbl

[13] V. Keyantuo, C. Lizama, M. Warma, “Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations”, Abstract and Applied Analysis, 2013, Article ID 614328, 11 pp. | MR

[14] T.-J. Xiao , J. Liang, “Abstract degenerate Cauchy problems in locally convex spaces”, Journal of Mathematical Analysis and Applications, 259 (2001), 398–412 | DOI | MR | Zbl

[15] T.-J. Xiao , J. Liang, “Higher order degenerate Cauchy problems in locally convex spaces”, Mathematical and Computer Modelling, 41 (2005), 837–847 | DOI | MR | Zbl

[16] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2001, 538 pp. | MR | Zbl

[17] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics, 1570, Springer-Verlag, New York, 1994, 234 pp. | DOI | MR | Zbl

[18] Q. Zheng, M. Li, Regularized Semigroups and Non-Elliptic Differential Operators, Science Press, Beijing, 2014, 220 pp.

[19] M. Kostić, “Abstract differential operators generating fractional resolvent families”, Acta Mathematica Sinica, English Series, 30 (2014), 1989–1988 | DOI | MR

[20] M. Kostić, “Abstract Volterra equations in locally convex spaces”, Science China Mathematics, 55 (2012), 1797–1825 | DOI | MR | Zbl

[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983, 279 pp. | MR | Zbl