Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_2_a8, author = {M. Kosti\'c}, title = {A note on semilinear degenerate relaxation equations associated with abstract differential operators}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {85--93}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/} }
TY - JOUR AU - M. Kostić TI - A note on semilinear degenerate relaxation equations associated with abstract differential operators JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 85 EP - 93 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/ LA - en ID - CHFMJ_2016_1_2_a8 ER -
M. Kostić. A note on semilinear degenerate relaxation equations associated with abstract differential operators. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a8/
[1] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis,, Eindhoven University of Technology, Eindhoven, 2001, iv+107 pp. | MR
[2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. | MR | Zbl
[3] A. A. Kilbas, H. M. Srivastava , J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Science B.V., Amsterdam, 2006, 540 pp. | MR
[4] M. Kostić, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Science Publishers, Boca Raton, New York, 2015, 484 pp. | MR
[5] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999, 340 pp. | MR | Zbl
[6] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag, Basel, 1993, 366 pp. | MR | Zbl
[7] S. G. Samko, A. A. Kilbas, O. I. Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993, 1006 pp. | MR | Zbl
[8] R. W. Carroll, R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976, 322 pp. | MR
[9] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Chapman and Hall/CRC Pure and Applied Mathematics Publ., New York, 1998, 336 pp. | MR
[10] Melnikova I.V., Filinkov A.I., Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC, Boca Raton, 2001, 264 pp. | MR | Zbl
[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems, 42, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR
[12] R.-N. Wang,D.-H Chen, T.-J. Xiao, “Abstract fractional Cauchy problems with almost sectorial operators”, Journal of Differential Equations, 252 (2012), 202–235 | DOI | MR | Zbl
[13] V. Keyantuo, C. Lizama, M. Warma, “Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations”, Abstract and Applied Analysis, 2013, Article ID 614328, 11 pp. | MR
[14] T.-J. Xiao , J. Liang, “Abstract degenerate Cauchy problems in locally convex spaces”, Journal of Mathematical Analysis and Applications, 259 (2001), 398–412 | DOI | MR | Zbl
[15] T.-J. Xiao , J. Liang, “Higher order degenerate Cauchy problems in locally convex spaces”, Mathematical and Computer Modelling, 41 (2005), 837–847 | DOI | MR | Zbl
[16] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2001, 538 pp. | MR | Zbl
[17] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics, 1570, Springer-Verlag, New York, 1994, 234 pp. | DOI | MR | Zbl
[18] Q. Zheng, M. Li, Regularized Semigroups and Non-Elliptic Differential Operators, Science Press, Beijing, 2014, 220 pp.
[19] M. Kostić, “Abstract differential operators generating fractional resolvent families”, Acta Mathematica Sinica, English Series, 30 (2014), 1989–1988 | DOI | MR
[20] M. Kostić, “Abstract Volterra equations in locally convex spaces”, Science China Mathematics, 55 (2012), 1797–1825 | DOI | MR | Zbl
[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983, 279 pp. | MR | Zbl