Asymptotics of solution of the Riccati equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 59-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Uniform asymptotics is found for a solution of the initial value problem to the
equation $ \varepsilon^2 u '= -u^2 + \varepsilon f (x) $, singularly depending on a small parameter $\varepsilon$. Equations of this type are already well studied, but this
equation represents an unexplored case of the right-hand side behavior.
By the method of asymptotics matching the three-scale asymptotic expansion for a solution is constructed and is justificated by the method of upper and lower solutions.
Keywords:
asymptotic expansion, small parameter, initial value problem,
asymptotics matching method, intermediate expansion, Riccati equation.
@article{CHFMJ_2016_1_2_a5,
author = {M. I. Rusanova},
title = {Asymptotics of solution of the {Riccati} equation},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {59--67},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/}
}
M. I. Rusanova. Asymptotics of solution of the Riccati equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 59-67. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/