Asymptotics of solution of the Riccati equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform asymptotics is found for a solution of the initial value problem to the equation $ \varepsilon^2 u '= -u^2 + \varepsilon f (x) $, singularly depending on a small parameter $\varepsilon$. Equations of this type are already well studied, but this equation represents an unexplored case of the right-hand side behavior. By the method of asymptotics matching the three-scale asymptotic expansion for a solution is constructed and is justificated by the method of upper and lower solutions.
Keywords: asymptotic expansion, small parameter, initial value problem, asymptotics matching method, intermediate expansion, Riccati equation.
@article{CHFMJ_2016_1_2_a5,
     author = {M. I. Rusanova},
     title = {Asymptotics of  solution of the {Riccati} equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/}
}
TY  - JOUR
AU  - M. I. Rusanova
TI  - Asymptotics of  solution of the Riccati equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 59
EP  - 67
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/
LA  - ru
ID  - CHFMJ_2016_1_2_a5
ER  - 
%0 Journal Article
%A M. I. Rusanova
%T Asymptotics of  solution of the Riccati equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 59-67
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/
%G ru
%F CHFMJ_2016_1_2_a5
M. I. Rusanova. Asymptotics of  solution of the Riccati equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 59-67. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a5/

[1] A. N. Tihonov, “Systems of differential equations containing small parameters at derivatives”, Sbornik Mathematics, 31 (73):3 (1952), 575–586 (In Russ.) | Zbl

[2] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, 102, American Mathematical Society (AMS), Providence, RI, 1992, 281 pp. | MR | MR | Zbl

[3] A. B. Vasil'yeva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems”, Fundamental and Applied Mathematics, 4:3 (1998), 799–851 (In Russ.) | MR | Zbl

[4] A. M., Il'in A. R. Danilin, Asymptotic methods in analysis, Fizmatlit Publ., Moscow, 2009, 248 pp. (In Russ.)

[5] O. Yu. Khachay, “Asymptotic expansion of the solution of the initial value problem for a singularly perturbed ordinary differential equation”, Differential Equations, 2:2 (2008), 282–285 | DOI | MR | MR | Zbl

[6] A. M. Il'in, S. F. Dolbeeva, Proceedings of the Steklov Institute of Mathematics, 253, suppl. 1 (2006), 105–116 | Zbl

[7] Yu. A. Krutova, “Asymptotics of the solution of a nonlinear Cauchy problem”, Chelyabinsk physical and mathematical journal, 1:1 (2016), 43–51 (In Russ.)

[8] N. E. Tsapenko, The Riccati equation and wave processes, Lomonosov Moscow State University Publ., Moscow, 2008, 244 pp. (In Russ.)

[9] A. I. Egorov, Riccati equations, Fizmatlit Publ., Moscow, 2001, 320 pp. (In Russ.)

[10] S. A. Chaplygin, A new method of approximate integration of differential equations, Gostekhizdat Publ., Moscow, Leningrad, 1950, 103 pp. (In Russ.)