Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 44-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditional gradient method is used for the numerical study of a robust control problem for the linearized quasistationary system of the phase field equations. The existence of a solution of the control problem is obtained, the method stability and approximation of solutions are proved. For some values of the problem parameters the numerical experiment was carried out.
Keywords: optimal control, system with distributed parameters, robust control problem, degenerate evolution equation, numerical solution, conditional gradient method.
@article{CHFMJ_2016_1_2_a4,
     author = {M. V. Plekhanova and G. D. Baybulatova},
     title = {Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
TI  - Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 44
EP  - 58
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/
LA  - ru
ID  - CHFMJ_2016_1_2_a4
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%T Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 44-58
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/
%G ru
%F CHFMJ_2016_1_2_a4
M. V. Plekhanova; G. D. Baybulatova. Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 44-58. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/

[1] V. E. Fedorov, “Smoothness of solutions of linear equations of Sobolev type”, Differential Equations, 37:12 (2001), 1731–1735 | DOI | MR | Zbl

[2] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and Systems Sciences International, 43:5 (2004), 698–702 | MR

[3] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR

[4] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative”, Izvestiya: Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl

[5] A. F. Islamova, Mixed control problems for linear distributed systems of Sobolev type, Thesis, Chelyabinsk, 2012, 129 pp. (In Russ.)

[6] M. V. Plekhanova, V. E. Fedorov, Optimal control for degenerate distributed systems, Izdatel'skiy Tsentr Yuzhno-Ural'skogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2013, 174 pp. (In Russ.)

[7] E. A. Omel'chenko, M. V. Plekhanova, P. N. Davydov, “Numerical solution of the linearized quasistationary phase field system of equations with delay”, Bulletin of South Ural State University. Mathematics. Mechanics. Physics, 5:2 (2013), 45–51 (In Russ.) | Zbl

[8] M. V. Plekhanova, G. D. Baibulatova, “Metod uslovnogo gradienta dlya odnoi zadachi zhëstkogo upravleniya vyrozhdennoi evolyutsionnoi sistemoi”, Chelyab. fiz.-mat. zhurn., 1:1 (2016), 81–92

[9] | Zbl

[10] V. E. Fedorov, N. D. Ivanova, “Time nonlocal boundary value problem for a linearized phase field equations system”, Bulletin of South Ural State University. Ser.: Mathematics. Mechanics. Physics, 7:3 (2015), 10–15 (In Russ.) | Zbl