Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_2_a4, author = {M. V. Plekhanova and G. D. Baybulatova}, title = {Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {44--58}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/} }
TY - JOUR AU - M. V. Plekhanova AU - G. D. Baybulatova TI - Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 44 EP - 58 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/ LA - ru ID - CHFMJ_2016_1_2_a4 ER -
%0 Journal Article %A M. V. Plekhanova %A G. D. Baybulatova %T Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 44-58 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/ %G ru %F CHFMJ_2016_1_2_a4
M. V. Plekhanova; G. D. Baybulatova. Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 44-58. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/
[1] V. E. Fedorov, “Smoothness of solutions of linear equations of Sobolev type”, Differential Equations, 37:12 (2001), 1731–1735 | DOI | MR | Zbl
[2] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and Systems Sciences International, 43:5 (2004), 698–702 | MR
[3] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR
[4] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative”, Izvestiya: Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl
[5] A. F. Islamova, Mixed control problems for linear distributed systems of Sobolev type, Thesis, Chelyabinsk, 2012, 129 pp. (In Russ.)
[6] M. V. Plekhanova, V. E. Fedorov, Optimal control for degenerate distributed systems, Izdatel'skiy Tsentr Yuzhno-Ural'skogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2013, 174 pp. (In Russ.)
[7] E. A. Omel'chenko, M. V. Plekhanova, P. N. Davydov, “Numerical solution of the linearized quasistationary phase field system of equations with delay”, Bulletin of South Ural State University. Mathematics. Mechanics. Physics, 5:2 (2013), 45–51 (In Russ.) | Zbl
[8] M. V. Plekhanova, G. D. Baibulatova, “Metod uslovnogo gradienta dlya odnoi zadachi zhëstkogo upravleniya vyrozhdennoi evolyutsionnoi sistemoi”, Chelyab. fiz.-mat. zhurn., 1:1 (2016), 81–92
[9] | Zbl
[10] V. E. Fedorov, N. D. Ivanova, “Time nonlocal boundary value problem for a linearized phase field equations system”, Bulletin of South Ural State University. Ser.: Mathematics. Mechanics. Physics, 7:3 (2015), 10–15 (In Russ.) | Zbl