Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 44-58
Voir la notice de l'article provenant de la source Math-Net.Ru
The conditional gradient method is used for the numerical study of a robust control problem for the linearized quasistationary system of the phase field equations. The existence of a solution of the control problem is obtained, the method stability and approximation of solutions are proved. For some values of the problem parameters the numerical experiment was carried out.
Keywords:
optimal control, system with distributed parameters, robust control problem, degenerate evolution equation, numerical solution, conditional gradient method.
@article{CHFMJ_2016_1_2_a4,
author = {M. V. Plekhanova and G. D. Baybulatova},
title = {Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {44--58},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/}
}
TY - JOUR AU - M. V. Plekhanova AU - G. D. Baybulatova TI - Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 44 EP - 58 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/ LA - ru ID - CHFMJ_2016_1_2_a4 ER -
%0 Journal Article %A M. V. Plekhanova %A G. D. Baybulatova %T Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 44-58 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/ %G ru %F CHFMJ_2016_1_2_a4
M. V. Plekhanova; G. D. Baybulatova. Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 44-58. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a4/