Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two genetic algorithms are designed and tested for constructing of the superstring for an arbitrary binary file. They are based on the adaptive choosing of genetic operators set.
Keywords: superstring construction, genetic algorithm, travelling salesman problem.
@article{CHFMJ_2016_1_2_a2,
     author = {Yu. O. Kashkareva},
     title = {Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/}
}
TY  - JOUR
AU  - Yu. O. Kashkareva
TI  - Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 24
EP  - 36
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/
LA  - ru
ID  - CHFMJ_2016_1_2_a2
ER  - 
%0 Journal Article
%A Yu. O. Kashkareva
%T Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 24-36
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/
%G ru
%F CHFMJ_2016_1_2_a2
Yu. O. Kashkareva. Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 24-36. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/

[1] L. A. Gladkov, V. V. Kureychik, V. M. Kureychik, Genetic algorithms, Fizmatlit Publ., Moscow, 2006, 320 pp. (In Russ.)

[2] Yu. A. Byurger, Soft computing, (In Russ.) (accepted 20.03.2016) http://www.getinfo.ru/article28_3.html

[3] Yu. Yu. Petrov, “Application of genetic algorithm to the regulation of the probability of genetic operators in solving of the bin packing problem”, Proceedings of North Caucasus State Technical University. Nature Sciences Serie, 2006, no. 2 (In Russ.)

[4] A. S. Myasnikov, Island algorithm with dynamic probabilities distribution of genetic operators choosing, (In Russ.) (accepted: 27.05.2012) http://technomag.edu.ru/doc/136503.html

[5] J. Gallant, D. Maier, J. A. Storer, “On finding minimal length superstrings”, J. of Computer and System Sciences, 20:1 (1980), 50–58 | DOI | MR | Zbl

[6] A. Blum [et al.], “Linear approximation of shortest superstring”, J. of the ACM, 4:4 (1994), 630–647 | DOI | MR | Zbl

[7] S. Kohn, A. Gottlieb, M. Kohn, “A generating function approach to the traveling salesman problem”, Proceedings of the 1977 annual conference ACM '77 (New York, 1977), 294–300

[8] J. D. C. Little [et al.], “An algorithm for the traveling salesman problem”, Operations Research, 11:6 (1963), 972–989 | DOI | Zbl

[9] Z. Sweedyk, “A $2.5$-approximation algorithm for shortest superstring”, SIAM J. of Computing, 29:3 (1999), 954–986 | DOI | MR

[10] X. Liu, O. Sykora, “Algorithms for the shortest common superstring problem”, Parallel Numerics '05: Theory and Application, eds. M. Vajteršic et al., Jošef Stefan Inst., Ljubljana; Univ. of Salzburg, Salzburg, 2005, 97–107

[11] A. Zaritsky, M. Sipper, “Coevolving solution to the shortest common superstring problem”, BioSystems, 76:1 (2004), 209–2016 | DOI