Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_2_a2, author = {Yu. O. Kashkareva}, title = {Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {24--36}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/} }
TY - JOUR AU - Yu. O. Kashkareva TI - Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 24 EP - 36 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/ LA - ru ID - CHFMJ_2016_1_2_a2 ER -
%0 Journal Article %A Yu. O. Kashkareva %T Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 24-36 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/ %G ru %F CHFMJ_2016_1_2_a2
Yu. O. Kashkareva. Genetic algorithm with a dynamic probabilities distribution of the selection of genetic operators for solving of problems with integer genes coding. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 24-36. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a2/
[1] L. A. Gladkov, V. V. Kureychik, V. M. Kureychik, Genetic algorithms, Fizmatlit Publ., Moscow, 2006, 320 pp. (In Russ.)
[2] Yu. A. Byurger, Soft computing, (In Russ.) (accepted 20.03.2016) http://www.getinfo.ru/article28_3.html
[3] Yu. Yu. Petrov, “Application of genetic algorithm to the regulation of the probability of genetic operators in solving of the bin packing problem”, Proceedings of North Caucasus State Technical University. Nature Sciences Serie, 2006, no. 2 (In Russ.)
[4] A. S. Myasnikov, Island algorithm with dynamic probabilities distribution of genetic operators choosing, (In Russ.) (accepted: 27.05.2012) http://technomag.edu.ru/doc/136503.html
[5] J. Gallant, D. Maier, J. A. Storer, “On finding minimal length superstrings”, J. of Computer and System Sciences, 20:1 (1980), 50–58 | DOI | MR | Zbl
[6] A. Blum [et al.], “Linear approximation of shortest superstring”, J. of the ACM, 4:4 (1994), 630–647 | DOI | MR | Zbl
[7] S. Kohn, A. Gottlieb, M. Kohn, “A generating function approach to the traveling salesman problem”, Proceedings of the 1977 annual conference ACM '77 (New York, 1977), 294–300
[8] J. D. C. Little [et al.], “An algorithm for the traveling salesman problem”, Operations Research, 11:6 (1963), 972–989 | DOI | Zbl
[9] Z. Sweedyk, “A $2.5$-approximation algorithm for shortest superstring”, SIAM J. of Computing, 29:3 (1999), 954–986 | DOI | MR
[10] X. Liu, O. Sykora, “Algorithms for the shortest common superstring problem”, Parallel Numerics '05: Theory and Application, eds. M. Vajteršic et al., Jošef Stefan Inst., Ljubljana; Univ. of Salzburg, Salzburg, 2005, 97–107
[11] A. Zaritsky, M. Sipper, “Coevolving solution to the shortest common superstring problem”, BioSystems, 76:1 (2004), 209–2016 | DOI