Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_2_a1, author = {L. V. Borel' and V. E. Fedorov}, title = {On unique solvability of the system of gravitational-gyroscopic waves in the {Boussinesq} approximation}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {16--23}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a1/} }
TY - JOUR AU - L. V. Borel' AU - V. E. Fedorov TI - On unique solvability of the system of gravitational-gyroscopic waves in the Boussinesq approximation JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 16 EP - 23 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a1/ LA - ru ID - CHFMJ_2016_1_2_a1 ER -
%0 Journal Article %A L. V. Borel' %A V. E. Fedorov %T On unique solvability of the system of gravitational-gyroscopic waves in the Boussinesq approximation %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 16-23 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a1/ %G ru %F CHFMJ_2016_1_2_a1
L. V. Borel'; V. E. Fedorov. On unique solvability of the system of gravitational-gyroscopic waves in the Boussinesq approximation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 16-23. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a1/
[1] G. A. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York-Basel, 2003, 490 pp. | MR | MR | Zbl
[2] M. V. Falaleev, S. S. Orlov, “Vyrozhdennye integro-differentsialnye uravneniya spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. «Mat. modelirovanie i programmirovanie», 2011, no. 7, No 4 (211), 100–110 | Zbl
[3] M. V. Falaleev, S. S. Orlov, “Integro-differential equations with degeneration in Banach spaces and their applications in the mathematical elasticity theory”, News of Irkutsk State University. Mathematics, 4:1 (2011), 118–134 (In Russ.) | Zbl
[4] M. V. Falaleev, S. S. Orlov, “Degenerate Integro-Differential Operators in Banach Spaces and Their Applications”, Russian Mathematics, 55:10 (2011), 59–69 | DOI | MR | Zbl
[5] M. V. Falaleev, “Integro-differential equations with a Fredholm operator at the highest derivative in Banach spaces and their applications”, News of Irkutsk State University. Mathematics, 5:5 (2012), 90–102 (In Russ.) | Zbl
[6] O. A. Stakheeva, “Local solvability of a class of linear equations with memory”, Bulletin of Chelyabinsk State University, 2009, no. 11, 20 (158), 70–76 (In Russ.) | MR | Zbl
[7] V. E. Fedorov, O. A. Stakheeva, “On solvability of linear Sobolev type equation with memory effect”, Nonclassical equations of mathematical physics, Sobolev Institute of Mathematics of SB RAS Publ., Novosibirsk, 2010, 245–261 (In Russ.)
[8] V. E. Fedorov, L. B. Borel, “On solvability of linear evolution equations with memory effects”, News of Irkutsk State University. Mathematics, 10 (2014), 106–124 (In Russ.) | Zbl
[9] V. E. Fedorov, O. A. Stakheeva, “On the local existence of solutions of equation with memory not solvable with respect to the time derivative”, Mathematical Notes, 98:3 (2015), 472–483 | DOI | DOI | MR | Zbl
[10] V. E. Fedorov, E. A. Omelchenko, “On solvability of some classes of Sobolev type equations with delay”, Functional Differential Equations, 2011 vol 18, no. 3–4, 187–199 | MR | Zbl
[11] V. E. Fedorov, E. A. Omelchenko, “Inhomogeneous linear Sobolev type equations with delay”, Siberian Mathematical Journal, 53:2 (2012), 335–344 | DOI | MR | Zbl
[12] “Linear equations of the Sobolev type with integral delay operator”, Russian Mathematics, 58:1 (2014), 60–69 | DOI | MR | Zbl
[13] V. E. Fedorov, L. B. Borel, “Solvability of loaded linear evolution equations with a degenerate operator at the derivative”, St. Petersburg Mathematical Journal, 26:3 (2015), 487–497 | DOI | MR | Zbl
[14] L. B. Borel, “On solvability of degenerate loaded systems of equations”, Mathematical notes of North-Eastern Federal University, 22:4 (88) (2015), 3–11 (In Russ.)
[15] V. E. Fedorov, D. M. Gordievskikh, “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI | MR | Zbl
[16] V. E. Fedorov, D. M. Gordievskikh, “Solutions of initial-boundary value problems for some degenerate time-fractional order systems of equations”, News of Irkutsk State University. Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl
[17] V. E. Fedorov, D. M. Gordievskikh, M. V. Plekhanova, “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl
[18] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216+vii pp. | MR | Zbl
[19] S. L. Sobolev, “On a new problem of mathematical physics”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 18:1 (1954), 3–50 (In Russ.) | Zbl
[20] V. E. Fedorov, N. D. Ivanova N.D., “Nonlinear evolution inverse problem for some Sobolev type equations”, Siberian Electronic Mathematical Reports, 8, Proceedings of the Second International School-Conference, p. I (2011), 363–378 (In Russ.) http://semr.math.nsc.ru/v8/c182-410.pdf