Group analysis of a quasilinear equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Symmetry analysis is carried out for a second order quasilinear partial differential equation with a free element depending on the phase function. In the nonlinear case two-dimensional principal groups kernel and free element specifications leading to the third symmetries are found. Invariant solutions or submodels are calculated for non-similar one-dimensional subalgebras of the principal Lie algebras with the specifications that were obtained. Conservation laws for the equations are calculated. The linear case with a constant free element is researched also. It is shown that the investigation results don't depend on the equation type.
Keywords: group analysis, symmetries group, Lie algebra, optimal system of subalgebras, invariant solution, submodel, conservation law.
@article{CHFMJ_2016_1_1_a9,
     author = {V. E. Fedorov and N. V. Filin},
     title = {Group analysis of a quasilinear equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - N. V. Filin
TI  - Group analysis of a quasilinear equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 93
EP  - 103
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/
LA  - ru
ID  - CHFMJ_2016_1_1_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A N. V. Filin
%T Group analysis of a quasilinear equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 93-103
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/
%G ru
%F CHFMJ_2016_1_1_a9
V. E. Fedorov; N. V. Filin. Group analysis of a quasilinear equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/

[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Transl. from the Russian, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl

[2] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Springer, 1985 | MR | MR

[3] Yu. N. Devyatko, O. V. Khomyakov, M. Yu. Kagan, “New mechanism of the formation of vacansy voids”, Low Temperature Physics, 36:4 (2010), 313–316 | DOI

[4] L. V. Ovsyannikov, “The «podmodeli» program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR | Zbl

[5] Yu. A. Chirkunov, S. V. Khabirov, Elements of symmetry analysis for differential equations of the continuum mechanics, Novosibirsk State Technical University Publ., 2012, 659 pp. (In Russ.)

[6] N. H. Ibragimov, Selected Works., v. 1,2, Alga Publications : Blekinge Institute of Technology, Karlskrona, Sweden, 2001, 291 pp.

[7] N. H. Ibragimov, “Nonlinear self-agjointness in constructing conservation laws”, Archives of ALGA, 7/8, 2010–2011, 1–99