Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_1_a9, author = {V. E. Fedorov and N. V. Filin}, title = {Group analysis of a quasilinear equation}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {93--103}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/} }
V. E. Fedorov; N. V. Filin. Group analysis of a quasilinear equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a9/
[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Transl. from the Russian, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl
[2] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Springer, 1985 | MR | MR
[3] Yu. N. Devyatko, O. V. Khomyakov, M. Yu. Kagan, “New mechanism of the formation of vacansy voids”, Low Temperature Physics, 36:4 (2010), 313–316 | DOI
[4] L. V. Ovsyannikov, “The «podmodeli» program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR | Zbl
[5] Yu. A. Chirkunov, S. V. Khabirov, Elements of symmetry analysis for differential equations of the continuum mechanics, Novosibirsk State Technical University Publ., 2012, 659 pp. (In Russ.)
[6] N. H. Ibragimov, Selected Works., v. 1,2, Alga Publications : Blekinge Institute of Technology, Karlskrona, Sweden, 2001, 291 pp.
[7] N. H. Ibragimov, “Nonlinear self-agjointness in constructing conservation laws”, Archives of ALGA, 7/8, 2010–2011, 1–99