Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_1_a8, author = {M. V. Plekhanova and G. D. Baybulatova}, title = {Conditional gradient method for a robust control problem to a degenerate evolution system}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {81--92}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/} }
TY - JOUR AU - M. V. Plekhanova AU - G. D. Baybulatova TI - Conditional gradient method for a robust control problem to a degenerate evolution system JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 81 EP - 92 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/ LA - ru ID - CHFMJ_2016_1_1_a8 ER -
%0 Journal Article %A M. V. Plekhanova %A G. D. Baybulatova %T Conditional gradient method for a robust control problem to a degenerate evolution system %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 81-92 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/ %G ru %F CHFMJ_2016_1_1_a8
M. V. Plekhanova; G. D. Baybulatova. Conditional gradient method for a robust control problem to a degenerate evolution system. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/
[1] S. P. Zubova, “On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints.”, Automation and Remote Control, 72:1 (2011), 23–37 | DOI | MR | Zbl
[2] A. V. Keller, “Numerical solution of a start robust control problem for the models of Leontyev type. Computational experiment”, Natural and technical sciences, 2011, no. 4, 476–482 (In Russ.)
[3] G. A. Kurina, “Invertibility of an operator appearing in the control theory for linear systems”, Mathematical Notes, 70:2 (2001), 206–212 | DOI | DOI | MR | Zbl
[4] V. F. Chistyakov, “Identically degenerate quadratic functional and Jacobi equations properties”, News of Russia Academy of Sciences. Theory and systems of control, 2004, no. 5, 52–59 (In Russ.) | MR
[5] V. E. Fedorov, “Smoothness of solutions of linear equations of Sobolev type”, Differential Equations, 37:12 (2001), 1731–1735 | MR | Zbl
[6] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and Systems Sciences International, 43:5 (2004), 698–702 | MR
[7] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR
[8] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative”, Izvestiya: Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl
[9] A. F. Islamova, Mixed control problems for linear distributed systems of Sobolev type, Thesis, Chelyabinsk, 2012, 129 pp. (In Russ.)
[10] M. V. Plekhanova, V. E. Fedorov, Optimal control for degenerate distributed systems, Izdatel'skiy Tsentr Yuzhno-Ural'skogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2013, 174 pp. (In Russ.)
[11] E. A. Omel'chenko, M. V. Plekhanova, P. N. Davydov, “Numerical solution of the linearized quasistationary phase field system of equations with delay”, Bulletin of South Ural State University. Mathematics. Mechanics. Physics, 5:2 (2013), 45–51 (In Russ.) | Zbl
[12] F. P. Vasil'yev, Methods for solving of extremal problems, Nauka Publ., Moscow, 1981, 400 pp. (In Russ.) | MR
[13] V. E. Fedorov, A. V. Urazaeva, “Inverse problem for a class of singular linear operator differential equations”, Proceedings of Voronezh Winter Mathematical School, Izdatel'stvo Voronezhskogo gosudarstvennogo universiteta Publ., Voronezh, 2004, 161–172 (In Russ.)