Conditional gradient method for a robust control problem to a degenerate evolution system
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 81-92

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the conditional gradient method is used for the numerical resolving of a robust control problem by solutions of the linearized quasistationary phase field system of equations. The convergence of the method is proved, the existence of optimal control and solvability of the conjugate problem are established. For some values of the parameters a numerical experiment is carried out.
Keywords: optimal control, system with distributed parameters, robust control problem, degenerate evolution equation, numerical solution, conditional gradient method.
@article{CHFMJ_2016_1_1_a8,
     author = {M. V. Plekhanova and G. D. Baybulatova},
     title = {Conditional gradient method for a robust control problem to a degenerate evolution system},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
TI  - Conditional gradient method for a robust control problem to a degenerate evolution system
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 81
EP  - 92
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/
LA  - ru
ID  - CHFMJ_2016_1_1_a8
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%T Conditional gradient method for a robust control problem to a degenerate evolution system
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 81-92
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/
%G ru
%F CHFMJ_2016_1_1_a8
M. V. Plekhanova; G. D. Baybulatova. Conditional gradient method for a robust control problem to a degenerate evolution system. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/