Conditional gradient method for a robust control problem to a degenerate evolution system
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 81-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the conditional gradient method is used for the numerical resolving of a robust control problem by solutions of the linearized quasistationary phase field system of equations. The convergence of the method is proved, the existence of optimal control and solvability of the conjugate problem are established. For some values of the parameters a numerical experiment is carried out.
Keywords: optimal control, system with distributed parameters, robust control problem, degenerate evolution equation, numerical solution, conditional gradient method.
@article{CHFMJ_2016_1_1_a8,
     author = {M. V. Plekhanova and G. D. Baybulatova},
     title = {Conditional gradient method for a robust control problem to a degenerate evolution system},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
TI  - Conditional gradient method for a robust control problem to a degenerate evolution system
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 81
EP  - 92
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/
LA  - ru
ID  - CHFMJ_2016_1_1_a8
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%T Conditional gradient method for a robust control problem to a degenerate evolution system
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 81-92
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/
%G ru
%F CHFMJ_2016_1_1_a8
M. V. Plekhanova; G. D. Baybulatova. Conditional gradient method for a robust control problem to a degenerate evolution system. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a8/

[1] S. P. Zubova, “On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints.”, Automation and Remote Control, 72:1 (2011), 23–37 | DOI | MR | Zbl

[2] A. V. Keller, “Numerical solution of a start robust control problem for the models of Leontyev type. Computational experiment”, Natural and technical sciences, 2011, no. 4, 476–482 (In Russ.)

[3] G. A. Kurina, “Invertibility of an operator appearing in the control theory for linear systems”, Mathematical Notes, 70:2 (2001), 206–212 | DOI | DOI | MR | Zbl

[4] V. F. Chistyakov, “Identically degenerate quadratic functional and Jacobi equations properties”, News of Russia Academy of Sciences. Theory and systems of control, 2004, no. 5, 52–59 (In Russ.) | MR

[5] V. E. Fedorov, “Smoothness of solutions of linear equations of Sobolev type”, Differential Equations, 37:12 (2001), 1731–1735 | MR | Zbl

[6] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and Systems Sciences International, 43:5 (2004), 698–702 | MR

[7] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR

[8] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative”, Izvestiya: Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl

[9] A. F. Islamova, Mixed control problems for linear distributed systems of Sobolev type, Thesis, Chelyabinsk, 2012, 129 pp. (In Russ.)

[10] M. V. Plekhanova, V. E. Fedorov, Optimal control for degenerate distributed systems, Izdatel'skiy Tsentr Yuzhno-Ural'skogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2013, 174 pp. (In Russ.)

[11] E. A. Omel'chenko, M. V. Plekhanova, P. N. Davydov, “Numerical solution of the linearized quasistationary phase field system of equations with delay”, Bulletin of South Ural State University. Mathematics. Mechanics. Physics, 5:2 (2013), 45–51 (In Russ.) | Zbl

[12] F. P. Vasil'yev, Methods for solving of extremal problems, Nauka Publ., Moscow, 1981, 400 pp. (In Russ.) | MR

[13] V. E. Fedorov, A. V. Urazaeva, “Inverse problem for a class of singular linear operator differential equations”, Proceedings of Voronezh Winter Mathematical School, Izdatel'stvo Voronezhskogo gosudarstvennogo universiteta Publ., Voronezh, 2004, 161–172 (In Russ.)