Modelling of a dynamic process with after-effect
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some aspects of the modelling for dynamic systems with delay are considered. Usually it is supposed that the dynamics of a system depends on the current state only. But in the considered systems the behaviour of a process depends on information of its previous states. The arising of the delay in a system essentially changes its dynamics. Special methods are used for modelling of such systems.
Keywords: mathematical modelling, dynamic system with delay, after-effect.
@article{CHFMJ_2016_1_1_a7,
     author = {S. A. Nikitina and A. S. Scorynin},
     title = {Modelling of a dynamic process with after-effect},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/}
}
TY  - JOUR
AU  - S. A. Nikitina
AU  - A. S. Scorynin
TI  - Modelling of a dynamic process with after-effect
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 73
EP  - 80
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/
LA  - ru
ID  - CHFMJ_2016_1_1_a7
ER  - 
%0 Journal Article
%A S. A. Nikitina
%A A. S. Scorynin
%T Modelling of a dynamic process with after-effect
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 73-80
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/
%G ru
%F CHFMJ_2016_1_1_a7
S. A. Nikitina; A. S. Scorynin. Modelling of a dynamic process with after-effect. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 73-80. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/

[1] G. I. Marchuk, Mathematical models in immunology. Computational methods and experiments, Nauka Publ., Moscow, 1991, 304 pp. (In Russ.) | MR

[2] A. V. Kim, A. N. Krasovskiy, Mathematical and computer modelling of systems with after-effect, UGTU–UPI Publ., Ekaterinburg, 2010 (In Russ.)

[3] G. I. Marchuk, Methods of computational mathematics, Nauka Publ., Moscow, 1989, 608 pp. (In Russ) | MR

[4] G. A. Bocharov, A. A. Romanyukha, Computational resolving of differential equations with a retarded argument on the basis of Runge — Kutta — Fehlberg methods, Department of Computational Mathematics of USSR Academy of Sciences Publ., Moscow, 1985 (In Russ.) | MR | Zbl

[5] G. A. Bocharov, A. A. Romanyukha, Computational resolving of differential equations with a retarded argument on the basis of linear multi-step methods. Approximation, stability and convergence, Department of Computational Mathematics Academy of Sciences of USSR Publ., Moscow, 1986 (In Russ.) | MR

[6] S. A. Nikitina, A. S. Skorynin, Qualitative analysis of a simple mathematical model of infectious disease, OFERNiO, no. 20013 from 24.03.2014, FGNU INIPI RAO, Moscow (In Russ.)

[7] L. N. Belykh, G. I. Marchuk, “Qualitative analysis of a simple mathematical model of infectious disease”, Mathematical modeling in immunology and medicine, Nauka Publ, Novosibirsk, 1982, 5–27 (In Russ.)