Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_1_a7, author = {S. A. Nikitina and A. S. Scorynin}, title = {Modelling of a dynamic process with after-effect}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {73--80}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/} }
S. A. Nikitina; A. S. Scorynin. Modelling of a dynamic process with after-effect. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 73-80. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a7/
[1] G. I. Marchuk, Mathematical models in immunology. Computational methods and experiments, Nauka Publ., Moscow, 1991, 304 pp. (In Russ.) | MR
[2] A. V. Kim, A. N. Krasovskiy, Mathematical and computer modelling of systems with after-effect, UGTU–UPI Publ., Ekaterinburg, 2010 (In Russ.)
[3] G. I. Marchuk, Methods of computational mathematics, Nauka Publ., Moscow, 1989, 608 pp. (In Russ) | MR
[4] G. A. Bocharov, A. A. Romanyukha, Computational resolving of differential equations with a retarded argument on the basis of Runge — Kutta — Fehlberg methods, Department of Computational Mathematics of USSR Academy of Sciences Publ., Moscow, 1985 (In Russ.) | MR | Zbl
[5] G. A. Bocharov, A. A. Romanyukha, Computational resolving of differential equations with a retarded argument on the basis of linear multi-step methods. Approximation, stability and convergence, Department of Computational Mathematics Academy of Sciences of USSR Publ., Moscow, 1986 (In Russ.) | MR
[6] S. A. Nikitina, A. S. Skorynin, Qualitative analysis of a simple mathematical model of infectious disease, OFERNiO, no. 20013 from 24.03.2014, FGNU INIPI RAO, Moscow (In Russ.)
[7] L. N. Belykh, G. I. Marchuk, “Qualitative analysis of a simple mathematical model of infectious disease”, Mathematical modeling in immunology and medicine, Nauka Publ, Novosibirsk, 1982, 5–27 (In Russ.)