Hilbert's inequality generalization to $l_p$ spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 52-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization to famous Hilbert's inequality is considered for the case of summable with $p$-th degree sequences ($p\leq 2$). New result is obtained by means of the operator approach. It is shown that the inequality can't be extended to the case $p>2$.
Keywords: Hilbert's inequality, linear bounded operator, Minkowski's inequality integral form, function's rearrangements, integral inequality, Hardy — Littlewood inequality.
@article{CHFMJ_2016_1_1_a5,
     author = {M. G. Lepchinski},
     title = {Hilbert's inequality generalization to $l_p$ spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/}
}
TY  - JOUR
AU  - M. G. Lepchinski
TI  - Hilbert's inequality generalization to $l_p$ spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 52
EP  - 58
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/
LA  - ru
ID  - CHFMJ_2016_1_1_a5
ER  - 
%0 Journal Article
%A M. G. Lepchinski
%T Hilbert's inequality generalization to $l_p$ spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 52-58
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/
%G ru
%F CHFMJ_2016_1_1_a5
M. G. Lepchinski. Hilbert's inequality generalization to $l_p$ spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/

[1] J. Michael Steele, The Cauchy – Schwarz Master Class: an Introduction to the Aart of Mathematical Inequalities, Cambridge Univ. Press, Cambridge, 2004, 318 pp. | MR

[2] H. L. Montgomery, “Hilbert's inequality”, J. London Math. Soc., 8:2 (1974), 73–82 | DOI | MR | Zbl

[3] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, 2nd, American Mathematical Soc. (AMS), Providence, 2001, 336 pp. | DOI | MR | Zbl

[4] Incomplete Gamma Functions, Digital Library of Mathematical Functions, http://dlmf.nist.gov/8.11.i