Hilbert's inequality generalization to $l_p$ spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 52-58
Cet article a éte moissonné depuis la source Math-Net.Ru
A generalization to famous Hilbert's inequality is considered for the case of summable with $p$-th degree sequences ($p\leq 2$). New result is obtained by means of the operator approach. It is shown that the inequality can't be extended to the case $p>2$.
Keywords:
Hilbert's inequality, linear bounded operator, Minkowski's inequality integral form, function's rearrangements, integral inequality, Hardy — Littlewood inequality.
@article{CHFMJ_2016_1_1_a5,
author = {M. G. Lepchinski},
title = {Hilbert's inequality generalization to $l_p$ spaces},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {52--58},
year = {2016},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/}
}
M. G. Lepchinski. Hilbert's inequality generalization to $l_p$ spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a5/
[1] J. Michael Steele, The Cauchy – Schwarz Master Class: an Introduction to the Aart of Mathematical Inequalities, Cambridge Univ. Press, Cambridge, 2004, 318 pp. | MR
[2] H. L. Montgomery, “Hilbert's inequality”, J. London Math. Soc., 8:2 (1974), 73–82 | DOI | MR | Zbl
[3] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, 2nd, American Mathematical Soc. (AMS), Providence, 2001, 336 pp. | DOI | MR | Zbl
[4] Incomplete Gamma Functions, Digital Library of Mathematical Functions, http://dlmf.nist.gov/8.11.i