The integrated environment for semi-automatic simulations of crystals using GULP program
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 118-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes an integrated environment for automation of the atomistic simulation program GULP, which includes the graphical user interface (GUI) and the development framework for automatic performing of repeating and interdependent computations using external algorithms. The performance of the environment is illustrated by the calculations of lattice energy landscapes in composition space and cation migration path in the crystal lattice.
Keywords: atomistic simulation, crystal lattice, phase diagrams, defects, GULP.
@article{CHFMJ_2016_1_1_a12,
     author = {D. B. Izergin and D. A. Zakharyevich},
     title = {The integrated environment for semi-automatic simulations of crystals using {GULP} program},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/}
}
TY  - JOUR
AU  - D. B. Izergin
AU  - D. A. Zakharyevich
TI  - The integrated environment for semi-automatic simulations of crystals using GULP program
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 118
EP  - 125
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/
LA  - ru
ID  - CHFMJ_2016_1_1_a12
ER  - 
%0 Journal Article
%A D. B. Izergin
%A D. A. Zakharyevich
%T The integrated environment for semi-automatic simulations of crystals using GULP program
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 118-125
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/
%G ru
%F CHFMJ_2016_1_1_a12
D. B. Izergin; D. A. Zakharyevich. The integrated environment for semi-automatic simulations of crystals using GULP program. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/

[1] V. S. Urusov, N. N. Eremin, Atomistic computer modeling of the structure and properties of inorganic crystals and minerals, their defects and solid solutions, GEOS Publ., Moscow, 2012, 448 pp. (In Russ.)

[2] J. D. Gale, “GULP: A computer program for the symmetry-adapted simulation of solids”, J. of the Chemical Soc., 93:4 (1997), 629–637

[3] J. D. Gale, A. L. Rohl, “The general utility lattice program (GULP)”, Molecular Simulation, 29:5 (2003), 291–341 | DOI | Zbl

[4] J. D. Gale, “GULP: Capabilities and prospects”, Zeitschrift für Kristallographie, 220:5/6 (2005), 552–554

[5] BIOVIA (data obrascheniya: 01.02.2016) http://accelrys.com/products/collaborative-science/biovia-materials-studio/references/gulp-references/gulp-references-2015.html

[6] S. Fleming, A. Rohl, “GDIS: a visualization program for molecular and periodic systems”, Zeitschrift für Kristallographie, 220:5/6 (2005), 580–584

[7] C. W. Glass, A. R. Oganov, N. Hansen, “USPEX — evolutionary crystal structure prediction”, Computer Physics Communications, 175 (2006), 713–720 | DOI | Zbl

[8] D. A. Zakharyevich, Yu. N. Kuryleva, “Isolation of radioactive wastes components in antimonates”, Radiation Safety, 2015, no. 1 (77), 15–23 (In Russ.) | MR

[9] T. Möller [et al.], “Titanium antimonates in various Ti:Sb ratios: ion exchange properties for radionuclide ions”, J. of Materials Chemistry, 13:4 (2003), 535–541 | DOI

[10] D. A. Zakharyevich, V. S. Balakin, “Potassium ion migration in the crystal lattice of tungstoantimonate”, Proceedings of the 16th International meeting «Order, disorder and Properties of Oxides», ODPO-16, v. 1, no. 16, SFU Publ., Rostov-on-Don, 2013, 121–123 (In Russ.)

[11] D. A. Zakharyevich, E. I. Yakovleva, Yu. N. Kuryleva, “Ion conduction and phase transitions in potassium and cesium tungstoantimonates”, Proceedings of the 16th International meeting «Order, disorder and Properties of Oxides», ODPO-18, v. 1, no. 18, SFU Publ., Rostov-on-Don, 2015, 145–146 (In Russ.)

[12] V. A. Burmistrov, D. A. Zakhar'evich, “Ion-conducting defect pyrochlore phases in the K${}_2$O-Sb${}_2$O${}_3$-WO${}_3$ system”, Inorganic Materials, 39:1 (2003), 68–71 | DOI