Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2016_1_1_a12, author = {D. B. Izergin and D. A. Zakharyevich}, title = {The integrated environment for semi-automatic simulations of crystals using {GULP} program}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {118--125}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/} }
TY - JOUR AU - D. B. Izergin AU - D. A. Zakharyevich TI - The integrated environment for semi-automatic simulations of crystals using GULP program JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 118 EP - 125 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/ LA - ru ID - CHFMJ_2016_1_1_a12 ER -
%0 Journal Article %A D. B. Izergin %A D. A. Zakharyevich %T The integrated environment for semi-automatic simulations of crystals using GULP program %J Čelâbinskij fiziko-matematičeskij žurnal %D 2016 %P 118-125 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/ %G ru %F CHFMJ_2016_1_1_a12
D. B. Izergin; D. A. Zakharyevich. The integrated environment for semi-automatic simulations of crystals using GULP program. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a12/
[1] V. S. Urusov, N. N. Eremin, Atomistic computer modeling of the structure and properties of inorganic crystals and minerals, their defects and solid solutions, GEOS Publ., Moscow, 2012, 448 pp. (In Russ.)
[2] J. D. Gale, “GULP: A computer program for the symmetry-adapted simulation of solids”, J. of the Chemical Soc., 93:4 (1997), 629–637
[3] J. D. Gale, A. L. Rohl, “The general utility lattice program (GULP)”, Molecular Simulation, 29:5 (2003), 291–341 | DOI | Zbl
[4] J. D. Gale, “GULP: Capabilities and prospects”, Zeitschrift für Kristallographie, 220:5/6 (2005), 552–554
[5] BIOVIA (data obrascheniya: 01.02.2016) http://accelrys.com/products/collaborative-science/biovia-materials-studio/references/gulp-references/gulp-references-2015.html
[6] S. Fleming, A. Rohl, “GDIS: a visualization program for molecular and periodic systems”, Zeitschrift für Kristallographie, 220:5/6 (2005), 580–584
[7] C. W. Glass, A. R. Oganov, N. Hansen, “USPEX — evolutionary crystal structure prediction”, Computer Physics Communications, 175 (2006), 713–720 | DOI | Zbl
[8] D. A. Zakharyevich, Yu. N. Kuryleva, “Isolation of radioactive wastes components in antimonates”, Radiation Safety, 2015, no. 1 (77), 15–23 (In Russ.) | MR
[9] T. Möller [et al.], “Titanium antimonates in various Ti:Sb ratios: ion exchange properties for radionuclide ions”, J. of Materials Chemistry, 13:4 (2003), 535–541 | DOI
[10] D. A. Zakharyevich, V. S. Balakin, “Potassium ion migration in the crystal lattice of tungstoantimonate”, Proceedings of the 16th International meeting «Order, disorder and Properties of Oxides», ODPO-16, v. 1, no. 16, SFU Publ., Rostov-on-Don, 2013, 121–123 (In Russ.)
[11] D. A. Zakharyevich, E. I. Yakovleva, Yu. N. Kuryleva, “Ion conduction and phase transitions in potassium and cesium tungstoantimonates”, Proceedings of the 16th International meeting «Order, disorder and Properties of Oxides», ODPO-18, v. 1, no. 18, SFU Publ., Rostov-on-Don, 2015, 145–146 (In Russ.)
[12] V. A. Burmistrov, D. A. Zakhar'evich, “Ion-conducting defect pyrochlore phases in the K${}_2$O-Sb${}_2$O${}_3$-WO${}_3$ system”, Inorganic Materials, 39:1 (2003), 68–71 | DOI