Generalized Dunkl transform on the line in inverse problems of approximation theory
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 67-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized Dunkl harmonic analysis on the line, depending on the parameter $r\in\mathbb{N}$, is studied. The case $r=0$ corresponds to the usual Dunkl harmonic analysis. All designs depend on the parameter $r\ge 1$. Using the generalized shift operator, differences and moduli of smoothness are determined. Using the differential-difference operator, the Sobolev space is defined. We study the approximation of functions from space $L^{p}(\mathbb{R},d\nu_{\lambda})$ by entire functions of exponential type not higher than $\sigma$ from the class $f\in B_{p, \lambda}^{\sigma,r}$ that have the property $f^{(2s+1)}(0)=0$, $s=0,1,\dots,r-1$. For entire functions from the class $f\in B_{p, \lambda}^{\sigma,r}$, inequalities are proved that are used in inverse problems of approximation theory. Depending on the behavior of the values of the function best approximation, an estimate is given of the modulus of smoothness of the function, as well as the modulus of smoothness on the degree of its second-order differential-difference operator. A condition is given for asymptotic equality between the best approximation of the function and its modulus of smoothness.
Keywords: Generalized Dunkl transform, generalized translation operator, convolution, modulus of smoothness, entire functions of exponential type, inverse inequalities of approximation theory.
@article{CHEB_2024_25_2_a4,
     author = {V. I. Ivanov},
     title = {Generalized {Dunkl} transform on the line in inverse problems of approximation theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a4/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Generalized Dunkl transform on the line in inverse problems of approximation theory
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 67
EP  - 81
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a4/
LA  - ru
ID  - CHEB_2024_25_2_a4
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Generalized Dunkl transform on the line in inverse problems of approximation theory
%J Čebyševskij sbornik
%D 2024
%P 67-81
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a4/
%G ru
%F CHEB_2024_25_2_a4
V. I. Ivanov. Generalized Dunkl transform on the line in inverse problems of approximation theory. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 67-81. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a4/

[1] Ben Saïd S., Kobayashi T., Orsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[2] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[3] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR

[4] Gorbachev D., Ivanov V., Tikhonov S., “On the kernel of the $(\kappa,a)$-Generalized Fourier transform”, Forum of Mathematics, Sigma, 11 (2023), e72, 25 pp. (Published online by Cambridge University Press: 14 August 2023) | DOI | MR | Zbl

[5] Ivanov, V. I., “Undeformed generalized Dunkl transform on the line”, Math. Notes, 114:4 (2023), 509–524 | DOI | Zbl

[6] Ivanov, V. I., “The intertwining operator for the generalized Dunkl transform on the line”, Chebyshevskii sbornik, 24:4 (2023), 48–62 | MR

[7] Ivanov, V. I., “Generalized one-dimensional Dunkl transform in direct problems of approximation theory”, Math. Notes, 116:2 (2024), 269–284

[8] Platonov, S. S., “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048 | DOI | DOI | MR | Zbl

[9] Platonov, S. S., “Bessel generalized translations and some problems of approximation theory for functions on the half-line”, Siberian Math. J., 50:1 (2009), 123–140 | DOI | MR | MR | Zbl

[10] Gorbachev D. V., Ivanov V. I., Tikhonov S Yu., “Positive Lp-Bounded Dunkl-Type Generalized Translation Operator and Its Applications”, Constr. Approx., 49:3 (2023), 555–605 | DOI | MR

[11] Gorbachev D. V., Ivanov V. I., “Fractional Smoothness in Lp with Dunkl Weight and Its Applications”, Math. Notes, 106:4 (2019), 537–561 | DOI | MR | Zbl