Mots-clés : continuant, Diophantine approximation.
@article{CHEB_2024_25_2_a3,
author = {D. A. Dolgov},
title = {On the continued fraction with rational partial quotients},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {43--66},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a3/}
}
D. A. Dolgov. On the continued fraction with rational partial quotients. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 43-66. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a3/
[1] Morier-Genoud S., Ovsienko V., “Farey Boat: Continued Fractions and Triangulations, Modular Group and Polygon Dissections”, Jahresber. Dtsch. Math., 121 (2019), 91–136 | DOI | MR | Zbl
[2] Çanakçı İ., Schiffler R., “Snake graphs and continued fractions”, European Journal of Combinatorics, 86 (2020) | MR
[3] Sorenson J., “Two Fast GCD Algorithms”, J. of Algorithms, 16:1 (1994), 110–144 | DOI | MR | Zbl
[4] Morrison D., Angel E., “Speeding Up Bresenham's Algorithm”, IEEE Computer Graphics and Applications, 11:6 (1991), 16–17 | DOI
[5] Zhang Z., “Finding $c_3$-strong pseudoprimes”, Mathematics of computation, 74:250 (2004), 1009–1024 | DOI | MR
[6] Xiao L., Xia X. -G., Wang W., “Multi-Stage Robust Chinese Remainder Theorem”, IEEE Transactions on Signal Processing, 62:18 (2014), 4772–4785 | DOI | MR | Zbl
[7] Weber, K., “The Accelerated Integer GCD Algorithm”, ACMTrans.Math. Software, 21:1 (1995), 111–122 | DOI | MR | Zbl
[8] Dolgov, D., “GCD calculation in the search task of pseudoprime and strong pseudoprime numbers”, Lobachevskii J Math., 37:6 (2016), 734–739 | DOI | MR | Zbl
[9] Dolgov, D. A., “An extended Jebelean-Weber-Sedjelmaci GCD algorithm”, Chebyshevskii Sbornik, 19:2 (2018), 421–431 (in russian) | DOI | Zbl
[10] Dolgov D. A., “K-arnyi algoritm vychisleniya NOD bez pobochnykh mnozhitelei”, XVI Mezhdunarodnaya konferentsiya «Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii» (Tula, 2019), 2019, 162–165
[11] Karatsuba, A. A., Principles of Analytic Number Theory, Nauka, M., 1983 | MR
[12] Jebelean T., A generalization of the binary GCD algorithm, ISAAC (Kiev, 1993), 1–5 | Zbl
[13] Stein J., “Computational problems associated with Racah algebra”, J. Comp. Phys., 1:3 (1967), 397–405 | DOI | Zbl
[14] Dolgov, D. A., “Continuants of continued fractions with rational incomplete quotients”, Diskr. Mat., 34:3 (2022), 34–51 (in russian) | DOI
[15] Straustrup B., The C++ Programming Language, Addison-Wesley Professional, 2013
[16] Bosma W., Kraaikamp C., Hommersom S., Keune M., Kooloos C., van Loon W., Loos R., Omiljan E., Popma G., Venhoek D., Zwart M., Continued fractions, , 2012 https://www.math.ru.nl/b̃osma/Students/CF.pdf
[17] Muir T., A Treatise on the Theory of Determinants, Dover Publications, 1960, 766 pp. | MR