Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a20, author = {M. Yu. Sokolova and D. V. Khristich}, title = {Acoustic waves in hypoelastic solids. {I.} {Isotropic} materials}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {318--333}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a20/} }
M. Yu. Sokolova; D. V. Khristich. Acoustic waves in hypoelastic solids. I. Isotropic materials. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 318-333. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a20/
[1] Pasmanik, L. A., Kamyshev, A. V., Radostin, A. V., Zaitsev, V. Yu., “Acoustic inhomogeneity parameters for non-destructive evaluation of the influence of manufacturing technology and operational damage on the metal structure”, Defectoscopy, 2020, no. 12, 24–36 | DOI
[2] Glushkov, E. V., Glushkova, N. V., Golub, M,V., Eremin, A. A., “Resonant Method for Detection and Identification of Delamination in Composite Plates by Elastic Guided Waves”, Mech. Solids, 55:6 (2020), 865–871 | DOI | DOI
[3] Jiang Y., Li G., Qian L.-X., Liang S., Destrade M., Cao Y., “Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis”, Biomech. Model. Mechanobiol., 14:5 (2015), 1119–1128 | DOI
[4] Truesdell C., “General and exact theory of waves in finite elastic strain”, Arch. Ratio. Mech. Anal., 8:1 (1961), 263–296 | DOI | MR | Zbl
[5] Guz', A. N., Elastic waves in bodies with initial stresses, in two volumes, Naukova Dumka, Kiev, 1986 (in Russian)
[6] Lurie, A. I., Non-linear theory of elasticity, North Holland, 2012
[7] Haupt P., Pao Y.-H., Hutter K., “Theory of incremental motion in a body with initial elasto-plastic deformation”, J. Elasticity, 28 (1992), 193–221 | DOI | MR | Zbl
[8] Destrade M., Ogden R. W., “On stress-dependent elastic moduli and wave speeds”, J. Appl. Math., 78:5 (2013), 965–997 | MR | Zbl
[9] Romenskii, E. I, Lys', E. V., Cheverda, V. A., Epov, M. I., “Dynamics of deformation of an elastic medium with initial stresses”, J. Appl. Mech. Tech. Phys., 58:5 (2017), 914–923 | DOI | MR | Zbl
[10] Belyankova, T. I., Kalinchuk, V. V., Sheidakov, D., “Higher-order moduli in the equations of dynamics of a prestressed elastic body”, Mech. Soldis, 2019, no. 3, 3–15 (in Russian) | DOI
[11] Yang H., Fu Li-Yun, Fu Bo-Ye, Müller T. M., “Acoustoelastic FD simulation of elastic wave propagation in prestressed media”, Front. Earth Sci., 10 (2022)
[12] Zhu Q., Burtin C., Binetruy C., “Acoustoelastic effect in polyamide 6: Linear and nonlinear behaviour”, Polym. Test, 40 (2014), 178–186 | DOI | MR
[13] Brovko, G. L., Constitutive relations of continuum mechanics: The development of the mathematical apparatus and the foundations of general theory, Nauka, M., 2017 (in Russian)
[14] Markin, A. A., Tolokonnikov, L. A., “Measures of the finite deformation processes”, News of the North Caucasus Scientific Center of Higher Education. Natural Sciences, 1987, no. 2, 49–53 (in Russian) | Zbl
[15] Markin, A. A., Sokolova, M. Yu., Thermomechanics of elastoplastic deformation, Cambridge International Science Publishing, Cambridge, 2015
[16] Ostrosablin, N. I., “On the structure of the elastic moduli tensor. Eigen elastic states”, Dynamics of a solid deformable body, 66, 1984, 113–125 (in Russian) | MR
[17] Rykhlevsky, J., “About Hooke's Law”, J. Appl. Math. Mech., 48:3 (1984), 420–435 (in Russian) | MR
[18] Ilyushin, A. A., “Questions of the general theory of plasticity”, J. Appl. Math. Mech., 24:3 (1960), 399–411 | MR | Zbl
[19] Markin, A. A., Sokolova M. Yu., “A variant of relations of the nonlinear elasticity”, Mech. Solids, 2019, no. 6, 68–75 (in Russian) | DOI
[20] Astapov Y., Khristich D., Markin A., Sokolova M., “The construction of nonlinear elasticity tensors for crystals and quasicrystals”, Int. J. Appl. Mech., 9:6 (2017), 1750080-1-1750080-15 | DOI
[21] Markin, A. A., Sokolova, M. Yu., Khristich, D. V., “A.A. Il'yushin's postulate for anisotropic materials and a version of constitutive relations”, Mech. Solids, 46:1 (2011), 30–35 | DOI | MR