Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 296-317
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-dimensional initial-boundary value problem for a hollow orthotropic multicomponent cylinder under the action of volumetric elastic diffusion perturbations is considered. The mathematical model includes a system of equations of elastic diffusion in a cylindrical coordinate system, which takes into account relaxation diffusion effects, implying finite propagation velocities of diffusion flows.
The problem is solved by the method of equivalent boundary conditions. To do this, we consider some auxiliary problem, the solution of which can be obtained by expanding into series in terms of eigenfunctions of the elastic diffusion operator. Next, we construct relations that connect the right-hand sides of the boundary conditions of both problems, which are a system of Volterra integral equations of the first kind. A calculation example for a three-component hollow cylinder is considered.
Keywords:
elastic diffusion, unsteady problems, Laplace transform, Green's functions, method of equivalent boundary conditions, hollow cylinder.
@article{CHEB_2024_25_2_a19,
author = {N. A. Zverev and A. V. Zemskov and V. M. Yaganov},
title = {Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {296--317},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/}
}
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov AU - V. M. Yaganov TI - Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations JO - Čebyševskij sbornik PY - 2024 SP - 296 EP - 317 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/ LA - ru ID - CHEB_2024_25_2_a19 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %A V. M. Yaganov %T Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations %J Čebyševskij sbornik %D 2024 %P 296-317 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/ %G ru %F CHEB_2024_25_2_a19
N. A. Zverev; A. V. Zemskov; V. M. Yaganov. Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 296-317. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/