Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 296-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional initial-boundary value problem for a hollow orthotropic multicomponent cylinder under the action of volumetric elastic diffusion perturbations is considered. The mathematical model includes a system of equations of elastic diffusion in a cylindrical coordinate system, which takes into account relaxation diffusion effects, implying finite propagation velocities of diffusion flows. The problem is solved by the method of equivalent boundary conditions. To do this, we consider some auxiliary problem, the solution of which can be obtained by expanding into series in terms of eigenfunctions of the elastic diffusion operator. Next, we construct relations that connect the right-hand sides of the boundary conditions of both problems, which are a system of Volterra integral equations of the first kind. A calculation example for a three-component hollow cylinder is considered.
Keywords: elastic diffusion, unsteady problems, Laplace transform, Green's functions, method of equivalent boundary conditions, hollow cylinder.
@article{CHEB_2024_25_2_a19,
     author = {N. A. Zverev and A. V. Zemskov and V. M. Yaganov},
     title = {Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {296--317},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/}
}
TY  - JOUR
AU  - N. A. Zverev
AU  - A. V. Zemskov
AU  - V. M. Yaganov
TI  - Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 296
EP  - 317
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/
LA  - ru
ID  - CHEB_2024_25_2_a19
ER  - 
%0 Journal Article
%A N. A. Zverev
%A A. V. Zemskov
%A V. M. Yaganov
%T Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
%J Čebyševskij sbornik
%D 2024
%P 296-317
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/
%G ru
%F CHEB_2024_25_2_a19
N. A. Zverev; A. V. Zemskov; V. M. Yaganov. Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 296-317. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/

[1] Abbas A. I., “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling, 39:20 (2015), 6196–6206 | DOI | MR | Zbl

[2] Abbas A. Ibrahim, Elmaboud Y. Abd, “Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time”, Mathematics and Mechanics of Solids, 22:2 (2017), 210–223 | DOI | MR | Zbl

[3] Abo-Dahab S.M., “Generalized Thermoelasticity with Diffusion and Voids under Rotation, Gravity and Electromagnetic Field in the Context of Four Theories”, Appl. Math. Inf. Sci., 13:2 (2019), 317–337 | DOI | MR

[4] Aouadi M., “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Intern. J. Mathem. and Mathem. Sci., 2006 (2006), 1–15 | DOI | MR

[5] Aouadi M., “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International Journal of Solids and Structures, 44 (2007), 5711–5722 | DOI | MR | Zbl

[6] Bhattacharya D., Pal P., Kanoria M., “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, International Journal of Computer Sciences and Engineering, 7:1 (2019), 148–156 | DOI

[7] Choudhary S., Deswal S., “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica, 45 (2010), 401–413 | DOI | MR | Zbl

[8] Davydov S. A., Zemskov A. V., “Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources”, International Journal of Heat and Mass Transfer. Part C, 183 (2022), 122213 | DOI

[9] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International Journal of Thermal Sciences, 50:5 (2011), 749–759 | DOI

[10] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Physica B: Condensed Matter, 496 (2016), 57–68 | DOI

[11] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI | Zbl

[12] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinite Medium with a Spherical Cavity”, Int. J. Thermophys., 33 (2012), 172–183 | DOI

[13] Kaur I., Lata P., “Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion”, International Journal of Mechanical and Materials Engineering, 14:12 (2019) | DOI | MR

[14] Kumar R., Devi S., “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176

[15] Kumar R., Devi S., “Effects of Viscosity on a Thick Circular Plate in Thermoelastic Diffusion Medium”, Journal of Solid Mechanics, 11:3 (2019), 581–592

[16] Lata P., “Time harmonic interactions in fractional thermoelastic diffusive thick circular plate”, Coupled Systems Mechanics, 8:1 (2019), 39–53

[17] Salama M. M., Kozae A. M., Elsafty M. A., Abelaziz S. S., “A half-space problem in the theory of fractional order thermoelasticity with diffusion”, International Journal of Scientific and Engineering Research, 6 (2015), 358–371

[18] Sharma N., Kumar R., Ram P., “Plane strain deformation in generalized thermoelastic diffusion”, Int. J. Thermophys., 29 (2008), 1503–1522 | DOI

[19] Sharma J. N., Thakur N., Singh S., “Propagation characteristics of elasto-thermodiffusive surface waves in semiconductor material half-space”, Therm Stresses, 30 (2007), 357–380 | DOI

[20] Tripathi J. J., Kedar G. D., Deshmukh K. C., “Two-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions”, Acta Mech., 226 (2015), 3263–3274 | DOI | MR | Zbl

[21] Xia R. H., Tian X. G., Shen Y. P., “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International Journal of Engineering Science, 47 (2009), 669–679 | DOI | MR | Zbl

[22] Minov, A., “Investigation of the stress-strain state of a hollow cylinder subject to thermal diffusion action of carbon in an axisymmetric thermal field, variable along its length”, BMSTU Journal of mechanical engineering, 2008, no. 10, 21–26 (In Russian)

[23] Pavlina, V. S., “On the effect of diffusion on thermal stresses in the vicinity of a cylindrical cavity”, Fiziko-himicheskaya mekhanika materialov, 1965, no. 4, 390–394 (In Russian)

[24] Hwang C. C., Huang I. B., “Diffusion-induced stresses in hollow cylinders for transient state”, IOSR Journal of Engineering (IOSRJEN), 2:8 (2012), 166–182 | DOI

[25] Lee S., Wang W. L., Chen J. R., “Diffusion-induced stresses in a hollow cylinder: Constant surface stresses”, Materials Chemistry and Physics, 64:2 (2000), 123–130 | DOI

[26] Soares J. S., “Diffusion of a fluid through a spherical elastic solid undergoing large deformations”, International Journal of Engineering Science, 47 (2009), 50–63 | DOI | MR | Zbl

[27] Tartibi M., Guccione J. M., Steigmann D. J., “Diffusion and swelling in a bio-elastic cylinder”, Mechanics Research Communications, 97 (2019), 123–128 | DOI

[28] Yang F., “Effect of diffusion-induced bending on diffusion-induced stress near the end faces of an elastic hollow cylinder”, Mechanics Research Communications, 51 (2013), 72–77 | DOI

[29] Kartashov, E. M., Kudinov, V. A., Analytical methods of the theory of heat conduction and its applications, URSS, M., 2018, 1080 pp. (In Russian)

[30] Zverev, N. A., Zemskov, A. V., “Modeling Unsteady Elastic Diffusion Processes in a Hollow Cylinder Taking into Account the Relaxation of Diffusion Fluxes”, Mathematical Modeling, 35:1 (2022), 25–37

[31] Zverev, N. A., Zemskov, A. V., Tarlakovsky, D., “Unsteady elastic diffusion of an orthotropic cylinder under uniform pressure considering relaxation of diffusion fluxes”, Mekhanika kompozitsionnykh materialov i konstruktsii, 27:4 (2021), 570–586 (In Russian) | DOI | MR

[32] Zemskov A. V., Tarlakovskii D. V., “Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer”, Materials Physics and Mechanics, 23:1 (2015), 36–41

[33] Zverev, N. A., Zemskov, A. V., Tarlakovsky, D. V., “Modelling of one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 26:1 (2022), 62–78 | DOI | Zbl

[34] Zemskov, A. V., Tarlakovskii, D., Modeling of mechanodiffusion processes in multicomponent bodies with flat boundaries, FIZMATLIT, M., 2021, 288 pp. (In Russian)

[35] Ditkin, V. A., Prudnikov, A., Handbook on Operational Calculus, Vysshaya shkola, M., 1961, 524 pp. (In Russian)

[36] Babichev, A. P., Babushkina, N. A., Bratkovsky, A. M. and others, Physical quantities, Handbook, eds. Grigoriev, I. S., Meilikhov, I. Z., Energoatomizdat, M., 1991, 1232 pp. (In Russian)