Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a19, author = {N. A. Zverev and A. V. Zemskov and V. M. Yaganov}, title = {Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {296--317}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/} }
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov AU - V. M. Yaganov TI - Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations JO - Čebyševskij sbornik PY - 2024 SP - 296 EP - 317 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/ LA - ru ID - CHEB_2024_25_2_a19 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %A V. M. Yaganov %T Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations %J Čebyševskij sbornik %D 2024 %P 296-317 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/ %G ru %F CHEB_2024_25_2_a19
N. A. Zverev; A. V. Zemskov; V. M. Yaganov. Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 296-317. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a19/
[1] Abbas A. I., “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling, 39:20 (2015), 6196–6206 | DOI | MR | Zbl
[2] Abbas A. Ibrahim, Elmaboud Y. Abd, “Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time”, Mathematics and Mechanics of Solids, 22:2 (2017), 210–223 | DOI | MR | Zbl
[3] Abo-Dahab S.M., “Generalized Thermoelasticity with Diffusion and Voids under Rotation, Gravity and Electromagnetic Field in the Context of Four Theories”, Appl. Math. Inf. Sci., 13:2 (2019), 317–337 | DOI | MR
[4] Aouadi M., “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Intern. J. Mathem. and Mathem. Sci., 2006 (2006), 1–15 | DOI | MR
[5] Aouadi M., “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International Journal of Solids and Structures, 44 (2007), 5711–5722 | DOI | MR | Zbl
[6] Bhattacharya D., Pal P., Kanoria M., “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, International Journal of Computer Sciences and Engineering, 7:1 (2019), 148–156 | DOI
[7] Choudhary S., Deswal S., “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica, 45 (2010), 401–413 | DOI | MR | Zbl
[8] Davydov S. A., Zemskov A. V., “Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources”, International Journal of Heat and Mass Transfer. Part C, 183 (2022), 122213 | DOI
[9] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International Journal of Thermal Sciences, 50:5 (2011), 749–759 | DOI
[10] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Physica B: Condensed Matter, 496 (2016), 57–68 | DOI
[11] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI | Zbl
[12] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinite Medium with a Spherical Cavity”, Int. J. Thermophys., 33 (2012), 172–183 | DOI
[13] Kaur I., Lata P., “Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion”, International Journal of Mechanical and Materials Engineering, 14:12 (2019) | DOI | MR
[14] Kumar R., Devi S., “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176
[15] Kumar R., Devi S., “Effects of Viscosity on a Thick Circular Plate in Thermoelastic Diffusion Medium”, Journal of Solid Mechanics, 11:3 (2019), 581–592
[16] Lata P., “Time harmonic interactions in fractional thermoelastic diffusive thick circular plate”, Coupled Systems Mechanics, 8:1 (2019), 39–53
[17] Salama M. M., Kozae A. M., Elsafty M. A., Abelaziz S. S., “A half-space problem in the theory of fractional order thermoelasticity with diffusion”, International Journal of Scientific and Engineering Research, 6 (2015), 358–371
[18] Sharma N., Kumar R., Ram P., “Plane strain deformation in generalized thermoelastic diffusion”, Int. J. Thermophys., 29 (2008), 1503–1522 | DOI
[19] Sharma J. N., Thakur N., Singh S., “Propagation characteristics of elasto-thermodiffusive surface waves in semiconductor material half-space”, Therm Stresses, 30 (2007), 357–380 | DOI
[20] Tripathi J. J., Kedar G. D., Deshmukh K. C., “Two-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions”, Acta Mech., 226 (2015), 3263–3274 | DOI | MR | Zbl
[21] Xia R. H., Tian X. G., Shen Y. P., “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International Journal of Engineering Science, 47 (2009), 669–679 | DOI | MR | Zbl
[22] Minov, A., “Investigation of the stress-strain state of a hollow cylinder subject to thermal diffusion action of carbon in an axisymmetric thermal field, variable along its length”, BMSTU Journal of mechanical engineering, 2008, no. 10, 21–26 (In Russian)
[23] Pavlina, V. S., “On the effect of diffusion on thermal stresses in the vicinity of a cylindrical cavity”, Fiziko-himicheskaya mekhanika materialov, 1965, no. 4, 390–394 (In Russian)
[24] Hwang C. C., Huang I. B., “Diffusion-induced stresses in hollow cylinders for transient state”, IOSR Journal of Engineering (IOSRJEN), 2:8 (2012), 166–182 | DOI
[25] Lee S., Wang W. L., Chen J. R., “Diffusion-induced stresses in a hollow cylinder: Constant surface stresses”, Materials Chemistry and Physics, 64:2 (2000), 123–130 | DOI
[26] Soares J. S., “Diffusion of a fluid through a spherical elastic solid undergoing large deformations”, International Journal of Engineering Science, 47 (2009), 50–63 | DOI | MR | Zbl
[27] Tartibi M., Guccione J. M., Steigmann D. J., “Diffusion and swelling in a bio-elastic cylinder”, Mechanics Research Communications, 97 (2019), 123–128 | DOI
[28] Yang F., “Effect of diffusion-induced bending on diffusion-induced stress near the end faces of an elastic hollow cylinder”, Mechanics Research Communications, 51 (2013), 72–77 | DOI
[29] Kartashov, E. M., Kudinov, V. A., Analytical methods of the theory of heat conduction and its applications, URSS, M., 2018, 1080 pp. (In Russian)
[30] Zverev, N. A., Zemskov, A. V., “Modeling Unsteady Elastic Diffusion Processes in a Hollow Cylinder Taking into Account the Relaxation of Diffusion Fluxes”, Mathematical Modeling, 35:1 (2022), 25–37
[31] Zverev, N. A., Zemskov, A. V., Tarlakovsky, D., “Unsteady elastic diffusion of an orthotropic cylinder under uniform pressure considering relaxation of diffusion fluxes”, Mekhanika kompozitsionnykh materialov i konstruktsii, 27:4 (2021), 570–586 (In Russian) | DOI | MR
[32] Zemskov A. V., Tarlakovskii D. V., “Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer”, Materials Physics and Mechanics, 23:1 (2015), 36–41
[33] Zverev, N. A., Zemskov, A. V., Tarlakovsky, D. V., “Modelling of one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences, 26:1 (2022), 62–78 | DOI | Zbl
[34] Zemskov, A. V., Tarlakovskii, D., Modeling of mechanodiffusion processes in multicomponent bodies with flat boundaries, FIZMATLIT, M., 2021, 288 pp. (In Russian)
[35] Ditkin, V. A., Prudnikov, A., Handbook on Operational Calculus, Vysshaya shkola, M., 1961, 524 pp. (In Russian)
[36] Babichev, A. P., Babushkina, N. A., Bratkovsky, A. M. and others, Physical quantities, Handbook, eds. Grigoriev, I. S., Meilikhov, I. Z., Energoatomizdat, M., 1991, 1232 pp. (In Russian)