Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a14, author = {S. E. Nohrin and V. T. Shevaldin}, title = {Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {243--250}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/} }
TY - JOUR AU - S. E. Nohrin AU - V. T. Shevaldin TI - Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients JO - Čebyševskij sbornik PY - 2024 SP - 243 EP - 250 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/ LA - ru ID - CHEB_2024_25_2_a14 ER -
%0 Journal Article %A S. E. Nohrin %A V. T. Shevaldin %T Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients %J Čebyševskij sbornik %D 2024 %P 243-250 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/ %G ru %F CHEB_2024_25_2_a14
S. E. Nohrin; V. T. Shevaldin. Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 243-250. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/
[1] Subbotin, Yu. N., “On the connection between finite differences and corresponding derivatives”, Proc. Steklov Inst. Math., 78 (1965), 24–42 (in Russian) | Zbl
[2] Subbotin, Yu. N., “Extremal problems of functional interpolation and mean interpolation splines”, Proc. Steklov Inst. Math., 138 (1977), 127–185 | MR | Zbl | Zbl
[3] Shevaldin, V. T., “Some problems of extremal interpolation in the mean for linear differential operators”, Proc. Steklov Inst. Math., 164 (1985), 233–273 | MR | Zbl | Zbl
[4] Novikov, S. I., Shevaldin, V. T., “On the connection between the second divided difference and the second derivative”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, 26, no. 2, 2020, 216–224 (in Russian) | DOI
[5] Subbotin, Yu. N., Shevaldin, V. T., “Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis”, Sbornik: Mathematics, 213:4 (2022), 556–577 | DOI | DOI | MR | Zbl
[6] Shevaldin, V. T., “Extremal interpolation with the least value of the norm of the second derivative in $L_p(R)$”, Izvestiya: Mathematics, 86:1 (2022), 203–219 | DOI | DOI | MR | Zbl
[7] Subbotin, Yu. N., Novikov, S. I., Shevaldin, V. T., “Extremal function interpolation and splines”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, 24, no. 3, 2018, 200–225 (in Russian) | DOI | MR
[8] Krein, M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi Mat. Nauk, 138:5 (83) (1958), 3–120 (in Russian) | Zbl
[9] Volkov, Yu. S., Novikov, S. I., “Estimates of solutions to uniform systems of linear equations and the problem of interpolation by cubic splines on the real line”, Siberian Math. J., 63:4 (2022), 677–90 | DOI | DOI | MR | Zbl
[10] Volkov Yu. S., Novikov S. I., “Estimates for solutions of bi-infinite systems of linear equations”, Eur. J. Math., 8:2 (2022), 722–731 | DOI | MR | Zbl
[11] Kantorovich, L. V., Krylov, V. I., Approximate methods of higher analysis, Fizmatgiz. Publ., M., 1962, 695 pp. | MR
[12] Gel'fond, A. O., Calculus of finite differences, Nauka Publ., M., 1967, 376 pp. | MR