Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 243-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses a difference equation of the form $\sum_{l=0}^{r}a_{k,l}Z_{k+l}=y_{k}\ (k\in \mathbb{Z})$, where $r\in \mathbb{N},\ y=\{y_k\}_{k\in \mathbb{Z}}$ is a given numerical sequence from the space ${{l}_{p}}\ (1\le p\infty)$, provided that the matrix $A=(a_{k,l})$, $a_{k,l}\in \mathbb{R}$, satisfies some condition close to the presence of a dominant diagonal. With the help of the fixed point theorem, sufficient conditions are written for the coefficients $a_{k,l}$, at which the equation has a unique solution $Z=\{ Z_{k}\}_{k\in \mathbb{Z}}$, belonging to the space $l_p$. For the norm of this solution, a numerical estimate is given from above.
Keywords: difference equation, sequences, space $l_p$, solution norm.
@article{CHEB_2024_25_2_a14,
     author = {S. E. Nohrin and V. T. Shevaldin},
     title = {Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {243--250},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/}
}
TY  - JOUR
AU  - S. E. Nohrin
AU  - V. T. Shevaldin
TI  - Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 243
EP  - 250
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/
LA  - ru
ID  - CHEB_2024_25_2_a14
ER  - 
%0 Journal Article
%A S. E. Nohrin
%A V. T. Shevaldin
%T Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients
%J Čebyševskij sbornik
%D 2024
%P 243-250
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/
%G ru
%F CHEB_2024_25_2_a14
S. E. Nohrin; V. T. Shevaldin. Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 243-250. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a14/

[1] Subbotin, Yu. N., “On the connection between finite differences and corresponding derivatives”, Proc. Steklov Inst. Math., 78 (1965), 24–42 (in Russian) | Zbl

[2] Subbotin, Yu. N., “Extremal problems of functional interpolation and mean interpolation splines”, Proc. Steklov Inst. Math., 138 (1977), 127–185 | MR | Zbl | Zbl

[3] Shevaldin, V. T., “Some problems of extremal interpolation in the mean for linear differential operators”, Proc. Steklov Inst. Math., 164 (1985), 233–273 | MR | Zbl | Zbl

[4] Novikov, S. I., Shevaldin, V. T., “On the connection between the second divided difference and the second derivative”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, 26, no. 2, 2020, 216–224 (in Russian) | DOI

[5] Subbotin, Yu. N., Shevaldin, V. T., “Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis”, Sbornik: Mathematics, 213:4 (2022), 556–577 | DOI | DOI | MR | Zbl

[6] Shevaldin, V. T., “Extremal interpolation with the least value of the norm of the second derivative in $L_p(R)$”, Izvestiya: Mathematics, 86:1 (2022), 203–219 | DOI | DOI | MR | Zbl

[7] Subbotin, Yu. N., Novikov, S. I., Shevaldin, V. T., “Extremal function interpolation and splines”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, 24, no. 3, 2018, 200–225 (in Russian) | DOI | MR

[8] Krein, M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi Mat. Nauk, 138:5 (83) (1958), 3–120 (in Russian) | Zbl

[9] Volkov, Yu. S., Novikov, S. I., “Estimates of solutions to uniform systems of linear equations and the problem of interpolation by cubic splines on the real line”, Siberian Math. J., 63:4 (2022), 677–90 | DOI | DOI | MR | Zbl

[10] Volkov Yu. S., Novikov S. I., “Estimates for solutions of bi-infinite systems of linear equations”, Eur. J. Math., 8:2 (2022), 722–731 | DOI | MR | Zbl

[11] Kantorovich, L. V., Krylov, V. I., Approximate methods of higher analysis, Fizmatgiz. Publ., M., 1962, 695 pp. | MR

[12] Gel'fond, A. O., Calculus of finite differences, Nauka Publ., M., 1967, 376 pp. | MR