Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a12, author = {D. A. Cybulski}, title = {Special cases of the interpolation theorem for classical predicate calculus}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {222--234}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a12/} }
D. A. Cybulski. Special cases of the interpolation theorem for classical predicate calculus. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 222-234. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a12/
[1] Craig, W., “Linear Reasoning. A New Form of the Herbrand–Gentzen Theorem”, Jour. symbolic logic, 22, 250–268 | DOI | MR | Zbl
[2] Lynon, R. C., “An Interpolation Theorem in the Predicate Calculus”, Pacific jour. math., 9, 129–142 | DOI | MR
[3] Tayclin, M. A., “Abstract of Lyndon's article”, Jour. symbolic logic, 25, 273–274 | DOI | MR
[4] Henkin L. A., “An Extension of the Craig–Lyndon Interpolation Theorem”, Jour. symbolic logic, 28, 201–216 | DOI | MR | Zbl
[5] Schütte K., “Der Interpolationssatz der intuitionistischen Prädikaten-logik”, Math. Ann., 148, 192–200 | DOI | MR | Zbl
[6] Maksimova, L., “Craig's Theorem for Superintuitionistic Logics and Amalgamated Varieties of Pseudo-Boolean Algebras”, Algebra and Logic, 16:6, 643–681 | MR | Zbl
[7] Maksimova, L., “On Variable Separation in Modal and Superintuitionistic Logics”, Studia Logica, 55, 99–112 | DOI | MR | Zbl
[8] Beth E. W., “On Padoa's Method in the Teory of Definition”, Studia Logica, 56, 330–339 | MR | Zbl
[9] Robinson A., “A Result of Consistency and It's Application to the Theory of Definition”, Kon. Ned. Akad., Amsterdam, Proc., Ser. A, 59, 47–58 | MR | Zbl
[10] Kleene S. C., Mathematical Logic, John Wiley Sons, inc, New York, 1967, 394–441 | MR
[11] Maltsev, A. I., Algebraic Systems, Nauka, M., 1970, 163–192
[12] Orevkov, V. P., “Upper Bounds of Inference Elongation When Eliminating Cuts”, Zapiski nauchnykh seminarov POMI, 137, 87–98 | MR | Zbl
[13] Orevkov, V. P., “On Glivenko's Classes of Sequents”, Trudy ordena Lenina Matematicheskogo Instituta Steklova, 98, 1968, 131–154 | MR | Zbl
[14] Ershov, Yu. L., Paliutin, E. A., Mathematical Logic, Nauka, M., 1987, 209–214 | MR
[15] Gentzen G., “Untersuchungen über das logische Schließen. I, II”, Math. Zeitschrift, 39, 176–210 | DOI | MR | Zbl
[16] Kleene S. C., “Permutability of inferences in Gentzen's caculi LK and LJ”, Memories of the Am. math. society, 10, 1–26 | MR | Zbl