Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_1_a9, author = {A. V. Shutov and {\CYRA}. {\CYRA}. Mokrova}, title = {On the number of isohedral polyominoes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {138--154}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a9/} }
A. V. Shutov; А. А. Mokrova. On the number of isohedral polyominoes. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 138-154. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a9/
[1] Golomb S. W., “Checker boards and polyominoes”, American Mathematical Monthly, 61 (1954), 672–682 | DOI | MR
[2] Golomb S. W., Polyominoes, 2nd edition, Princeton University Press, New Jercey, 1994, 196 pp. | DOI
[3] Gardner M., “More about tiling the plane: the possibilities of polyominoes, polyiamonds, and polyhexes”, Scientic American, 1975, 112–115 | DOI
[4] Rhoads G. C., “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329–353 | DOI | MR | Zbl
[5] Rawsthorne D., “Tiling complexity of small n-ominoes (n 10)”, Discrete Math., 70:1 (1988), 71–75 | DOI | MR | Zbl
[6] Rhoads G. C., Planar Tilings and the Search for an Aperiodic Prototile, PhD dissertation, Rutgers University, 2003
[7] Myers J., Polyomino, polyhex and polyiamond tiling https://www.polyomino.org.uk/mathematics/polyform-tiling/
[8] Fontaine A., Martin G., “Polymorphic polyominoes”, Math. Mag., 57:5 (1984), 275–283 | DOI | MR | Zbl
[9] Kazuyuki A., Yoshinobu H., “On the number of p4-tilings by an $n$-omino”, Internat. J. Comput. Geom. Appl., 29:1 (2018), 3–19 | DOI | MR
[10] Maleev A. V., “Algorithm and computer-program search for variants of polyomino packings in plane”, Kristallografija, 58:5 (2013), 749–756 | DOI
[11] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “A method to generate polyominoes and polyiamonds for tilings with rotational symmetry”, Graphs and Combinatorics, 23, Supplement 1 (2007), 259–267 | DOI | MR | Zbl
[12] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “Enumeration of polyominoes, polyiamonds and polyhexes for isohedral tilings with rotational symmetry”, Computational Geometry and Graph Theory - International Conference KyotoCGGT, Revised Selected Papers (Kyoto, Japan, June 11–15, 2007), Springer, 2007, 68–78 | DOI | MR
[13] Horiyama T., Samejima M., “Enumeration of polyominoes for p4 tiling”, Proc. 21st Canadian Conf. Computational Geometry. CCCG, 2009, 29–32
[14] Beauquier D., Nivat M., “On translating one polyomino to tile the plane”, Discrete Comput. Geom., 6:6 (1991), 575–592 | DOI | MR | Zbl
[15] Brlek S., Provencal X., Fedou J.-M., “On the tiling by translation problem”, Discrete Applied Mathematics, 157:3 (2009), 464–475 | DOI | MR | Zbl
[16] Gambini I., Vuillon L., “An algorothm for deciding if a polyomino tiles the plane by translations”, RAIRO Theoretical Informatics and Applications, 41:2 (2007), 147–155 | DOI | MR | Zbl
[17] Keating K., Vince A., “Isohedral polyomino tiling of the plane”, Discrete Comput. Geom., 21:4 (1999), 615–630 | DOI | MR | Zbl
[18] Lanngerman S., Winslow A., “A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino”, Proc. of 32nd International Symposium on Computational Geometry, SoCG 2016, 2016, 50:1–50:15 | DOI | MR
[19] Brlek S., Frosini A., Rinaldi S., Vuillon L., “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006), 15 pp. | DOI | MR | Zbl
[20] Maleev A. V., Shutov A. V., “On the number of translational plane tilings by polyomino”, Proc. IX All-Russian scientfic school “Mathematical Research in Natural sciences” (Apatity), 2013, 101–106
[21] Shutov A. V., Kolomeykina E. V., “The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino”, Model. Anal. Inform. Sist., 20:5 (2013), 148–157 | DOI
[22] Shutov A. V., Kolomeykina E. V., “The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino”, Model. Anal. Inform. Sist., 22:2 (2015), 295–303 | DOI | MR
[23] Shutov A. V., Kolomeykina E. V., “The estimation of the number of p2-tilings of a plane by a given area polyomino”, Chebyshevskii Sbornik, 17:3 (2016), 204–214 | DOI | MR | Zbl
[24] Goodman-Strauss C., “Can't decide? undecide!”, Notices of the American Mathematical Society, 57:3 (2010), 343–356 | MR | Zbl
[25] Hilbert D., “Mathematical problems”, Bulletin of the American Mathematical Society, 8:10 (1902), 437–479 | DOI | MR
[26] Grunbaum B., Shephard G.C., “The eighty-one types of isohedral tilings in the plane”, Mathematical Proceedings of the Cambridge Philosophical Society, 82:2 (1977), 177–196 | DOI | MR | Zbl
[27] Heesch H., Kienzle O., Flachenschluss: System der Formen luckenlos aneinanderschliessender Flachteile, Springer, 1963 | MR
[28] Schattschneider D., “Will it tile? try the Conway criterion!”, Mathematics Monthly, 53:4 (1980), 224–233 | DOI | MR | Zbl
[29] Bauerschmidt R., Duminil-Copin H., Goodman J., Slade G., “Lectures on selfavoiding walks”, Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, 15, 2010, 395–476 | MR
[30] Schattschneider D., “John Conway, Tilings, and Me!”, Mathematical Intelligencer, 43:2 (1921), 124–129 | DOI | MR