A generalisation of Legendre's three-square theorem
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 127-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a generalisation of Legendre's three-square theorem to representations of two positive integers as sums of three squares for which the first square of each representation is the same is presented.
Keywords: legendre's three-square theorem, hasse's Principle for systems of two quadratic forms.
@article{CHEB_2024_25_1_a8,
     author = {H. Al-Assad},
     title = {A generalisation of {Legendre's} three-square theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a8/}
}
TY  - JOUR
AU  - H. Al-Assad
TI  - A generalisation of Legendre's three-square theorem
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 127
EP  - 137
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a8/
LA  - ru
ID  - CHEB_2024_25_1_a8
ER  - 
%0 Journal Article
%A H. Al-Assad
%T A generalisation of Legendre's three-square theorem
%J Čebyševskij sbornik
%D 2024
%P 127-137
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a8/
%G ru
%F CHEB_2024_25_1_a8
H. Al-Assad. A generalisation of Legendre's three-square theorem. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a8/

[1] Anthony Knapp, Advanced Algebra, Birkhäuser, Boston, 2006 | MR | Zbl

[2] Jean-Pierre Serre, A Course in Arithmetic, Springer Verlag, New York, 1973 | MR | Zbl

[3] Chubarikov, V. N., Chebishevskii Sbornik, 21:4 (2020), 1–18

[4] J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer, J. für die reine und angew Math., 373 (1987), 37–107 | MR | Zbl

[5] Colliot-Thélène, Jean-Louis, and Coray, D., “Descente et principe de Hasse pour certaines variétés rationnelles”, Journal für die reine und angewandte Mathematik, 320 (1980), 150–191 | MR | Zbl

[6] Per Salbergeryu On the arithmetic of intersections of two quadrics containing a conic, 2023, arXiv: 2305.02109v1 [math.NT]

[7] Vinogradov, I. M., Foundations of Number Theory, Fiz.-Mat.lit, M., 1983 | MR

[8] Borevich, Z. I., Shafarevich, I. R., Theory of Numbers, M., 1964