Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_1_a5, author = {S. E. Pustovoitov}, title = {Research of the structure of the {Liouville} foliation of an integrable elliptical billiard with polynomial potential}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {62--102}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a5/} }
TY - JOUR AU - S. E. Pustovoitov TI - Research of the structure of the Liouville foliation of an integrable elliptical billiard with polynomial potential JO - Čebyševskij sbornik PY - 2024 SP - 62 EP - 102 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a5/ LA - ru ID - CHEB_2024_25_1_a5 ER -
%0 Journal Article %A S. E. Pustovoitov %T Research of the structure of the Liouville foliation of an integrable elliptical billiard with polynomial potential %J Čebyševskij sbornik %D 2024 %P 62-102 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a5/ %G ru %F CHEB_2024_25_1_a5
S. E. Pustovoitov. Research of the structure of the Liouville foliation of an integrable elliptical billiard with polynomial potential. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 62-102. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a5/
[1] Birkhoff, G., Dynamical systems, American Mathematical Society Colloquium publications, IX, 1966, 305 pp. | MR
[2] Clebsch, A. (ed.), Jacobi's lectures on dynamics, 2nd edition, Hindustan book agency, New Delhi, 2009, 339 pp. | MR
[3] V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math., 188:1 (2018), 315–380 | DOI | MR | Zbl
[4] A. A. Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, Journal of the European Mathematical Society, 23:3 (2021), 995–1049 | DOI | MR | Zbl
[5] Fokicheva, V. V., “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[6] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl
[7] Kibkalo V. A., Fomenko A. T., Kharcheva I. S., “Realization of integrable Hamiltonial systems by billiard books”, Transactions of the Moscow Mathematical Society, 80, 2021 | MR | Zbl
[8] M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl
[9] Vedyushkina V. V., Pustovoitov S. E., “Classification of liouville foliations of integrable topological billiards in magnetic fields”, Sbornik Mathematics, 214:2 (2023), 166–196 | DOI | DOI | MR | Zbl
[10] J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl
[11] V. I. Dragovich, “Integrable perturbations of a Birkhoff billiards inside an ellipse”, J. Appl. Maths Mechs., 62:1 (1998), 159–162 | DOI | MR | Zbl
[12] Kobtsev, I. F., “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013 | DOI | DOI | MR | Zbl
[13] Pustovoitov, S. E., “Topological Analysis of an Elliptic Billiard in a Fourth-Order Potential Field”, Moscow University Mathematics Bulletin, 76:5 (2021), 193–205 | DOI | MR | Zbl
[14] Bolsinov, A. V., Fomenko, A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, 2004 | MR | Zbl
[15] Kozlov, V. V., Treshchev, D. V., Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Translations of Mathematical Monographs, 89, American Mathematical Society, 1991, 171 pp. | DOI | MR | Zbl
[16] Kharlamov M.P., “Topological analysis and Boolean function: I. Methods and applications to the classical systems”, Non-lineal dynamics, 6:4 (2010), 769–805
[17] Fomenko, A. T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions of integrability”, Mathematics of the USSR-Izvestiya, 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[18] Fomenko, A. T., “The symplectic topology of completely integrable Hamiltonian systems”, Russian Mathematical Surveys, 44:1 (1989), 181 | DOI | MR | Zbl
[19] Fomenko, A. T., Zieschang, H., “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1990), 567–596 | DOI | MR | Zbl
[20] Fomenko, A. T., “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higherdimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR