Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_1_a2, author = {A. I. Denisov and I. V. Denisov}, title = {Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {26--41}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/} }
TY - JOUR AU - A. I. Denisov AU - I. V. Denisov TI - Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities JO - Čebyševskij sbornik PY - 2024 SP - 26 EP - 41 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/ LA - ru ID - CHEB_2024_25_1_a2 ER -
%0 Journal Article %A A. I. Denisov %A I. V. Denisov %T Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities %J Čebyševskij sbornik %D 2024 %P 26-41 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/ %G ru %F CHEB_2024_25_1_a2
A. I. Denisov; I. V. Denisov. Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/
[1] Vasilyeva, A. B., Butuzov, V. F., Asymptotic methods in the theory of singular perturbations, Higher school, M., 1990 | MR
[2] Amann H., “On the Existence of Positive Solutions of Nonlinear Elliptic Boundary Value Problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR
[3] Sattinger D. H., “Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl
[4] Amann H., Nonlinear Analysis, coll. of papers in honor of E. H. Rothe, eds. L. Cesari et al., Acad press, cop, New York etc, 1978, 1–29 | MR
[5] Nefedov N. N., “The Method of Differential Inequalities for Some Singularly Pertubed Partial Differential Equations”, Differential Equations, 31:4 (1995), 668–671 | MR | Zbl
[6] Denisov, I. V., “On the asymptotic expansion of the solution of a singularly perturbed elliptic equation in a rectangle”, Asymptotic methods of the theory of singularly perturbed equations and ill-posed problems, Collection of articles, scientific. tr., Ilim, Bishkek, 1991, 37
[7] Denisov I. V., “Angular Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Quadratic Nonlinearity”, Computational Mathematics and Mathematical Physics., 57:2 (2017), 253–271 | DOI | DOI | MR | Zbl
[8] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity”, Computational Mathematics and Mathematical Physics, 58:4 (2018), 562–571 | DOI | DOI | MR | Zbl
[9] Denisov, I. V., “On some classes of functions”, Chebyshevskii Sbornik, 10:2 (30) (2009), 79–108 | MR | Zbl
[10] Denisov I. V., Denisov A. I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:1 (2019), 96–111 | DOI | DOI | MR | Zbl
[11] Denisov I. V., Denisov A. I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonmonotonic Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1518–1527 | DOI | DOI | MR | Zbl
[12] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Cubic Nonlinearities”, Computational Mathematics and Mathematical Physics, 61:2 (2021), 242–253 | DOI | DOI | MR | Zbl
[13] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems with Nonlinearities Having Stationary Points”, Computational Mathematics and Mathematical Physics, 61:11 (2021), 1855–1863 | DOI | DOI | MR | Zbl
[14] Denisov, A. I., Denisov, I. V., “Mathematical models of combustion processes”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzor, 185, VINITI RAN, M., 2020, 82–88 | DOI
[15] Denisov, A. I., Denisov, I. V., “Nonlinear method of angular boundary functions in problems with cubic nonlinearities”, Chebyshevskii Sbornik, 24:1 (88) (2023), 27–39 | DOI | MR | Zbl