Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 26-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the rectangle $\Omega =\{(x,t) | 0$ we consider an initial-boundary value problem for a singularly perturbed parabolic equation $$ \varepsilon^2\left(a^2\frac{\partial^2 u}{\partial x^2}-\frac{\partial u}{\partial t}\right)=F(u,x,t,\varepsilon), (x,t)\in \Omega, $$ $$ u(x,0,\varepsilon)=\varphi(x), 0\le x\le 1, $$ $$ u(0,t,\varepsilon)=\psi_1(t), u(1,t,\varepsilon)=\psi_2(t), 0\le t\le T. $$ Research is carried out under the assumption that at the corner points $(k,0)$ of the rectangle $\Omega$, where $k=0$ or $1$, the function $F(u)=F(u,k,0,0)$ is cubic and has the form $$ F(u)=(u-\alpha(k))(u-\beta(k))(u-\bar u_0(k)), \text{ where } \alpha(k)\leq\beta(k)\bar u_0(k). $$ The nonlinear method of angular boundary functions is used, which combines the (linear) method of angular boundary functions, the method of upper and lower solutions (barriers), and the method of differential inequalities. Under the condition $\varphi(k)>\bar u_0(k)$, a complete asymptotic expansion of the solution for $\varepsilon\rightarrow 0$ is constructed and its uniformity in a closed rectangle is substantiated. Previously, the following cases of cubic nonlinearities were considered: $$ F(u)=u^3-\bar u^3_0, \text{ where } \bar u_0=\bar u_0(k)>0, $$ under the assumption that the boundary value $\varphi( k)>\bar u_0(k)$, as well as the case $$ F(u)=u^3-\bar u^3_0, \text{ where } \bar u_0=\bar u_0(k) 0, $$ under the assumption that the boundary value $\varphi(k)$ is contained in the interval $$ \bar u_0\varphi(k)\frac{\bar u_0}{2} 0. $$
Keywords: boundary layer, asymptotic approximation, singularly perturbed equation.
@article{CHEB_2024_25_1_a2,
     author = {A. I. Denisov and I. V. Denisov},
     title = {Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/}
}
TY  - JOUR
AU  - A. I. Denisov
AU  - I. V. Denisov
TI  - Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 26
EP  - 41
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/
LA  - ru
ID  - CHEB_2024_25_1_a2
ER  - 
%0 Journal Article
%A A. I. Denisov
%A I. V. Denisov
%T Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities
%J Čebyševskij sbornik
%D 2024
%P 26-41
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/
%G ru
%F CHEB_2024_25_1_a2
A. I. Denisov; I. V. Denisov. Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a2/

[1] Vasilyeva, A. B., Butuzov, V. F., Asymptotic methods in the theory of singular perturbations, Higher school, M., 1990 | MR

[2] Amann H., “On the Existence of Positive Solutions of Nonlinear Elliptic Boundary Value Problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR

[3] Sattinger D. H., “Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl

[4] Amann H., Nonlinear Analysis, coll. of papers in honor of E. H. Rothe, eds. L. Cesari et al., Acad press, cop, New York etc, 1978, 1–29 | MR

[5] Nefedov N. N., “The Method of Differential Inequalities for Some Singularly Pertubed Partial Differential Equations”, Differential Equations, 31:4 (1995), 668–671 | MR | Zbl

[6] Denisov, I. V., “On the asymptotic expansion of the solution of a singularly perturbed elliptic equation in a rectangle”, Asymptotic methods of the theory of singularly perturbed equations and ill-posed problems, Collection of articles, scientific. tr., Ilim, Bishkek, 1991, 37

[7] Denisov I. V., “Angular Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Quadratic Nonlinearity”, Computational Mathematics and Mathematical Physics., 57:2 (2017), 253–271 | DOI | DOI | MR | Zbl

[8] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity”, Computational Mathematics and Mathematical Physics, 58:4 (2018), 562–571 | DOI | DOI | MR | Zbl

[9] Denisov, I. V., “On some classes of functions”, Chebyshevskii Sbornik, 10:2 (30) (2009), 79–108 | MR | Zbl

[10] Denisov I. V., Denisov A. I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:1 (2019), 96–111 | DOI | DOI | MR | Zbl

[11] Denisov I. V., Denisov A. I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonmonotonic Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1518–1527 | DOI | DOI | MR | Zbl

[12] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Cubic Nonlinearities”, Computational Mathematics and Mathematical Physics, 61:2 (2021), 242–253 | DOI | DOI | MR | Zbl

[13] Denisov I. V., “Corner Boundary Layer in Boundary Value Problems with Nonlinearities Having Stationary Points”, Computational Mathematics and Mathematical Physics, 61:11 (2021), 1855–1863 | DOI | DOI | MR | Zbl

[14] Denisov, A. I., Denisov, I. V., “Mathematical models of combustion processes”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzor, 185, VINITI RAN, M., 2020, 82–88 | DOI

[15] Denisov, A. I., Denisov, I. V., “Nonlinear method of angular boundary functions in problems with cubic nonlinearities”, Chebyshevskii Sbornik, 24:1 (88) (2023), 27–39 | DOI | MR | Zbl