On coprime elements of the Beatty sequence
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 164-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note discusses two applications of the asymptotic formula obtained by the authors for the number of values of the Beatty sequence in an arithmetic progression with increasing difference: asymptotic formulas are obtained for the number of elements of the Beatty sequence that are coprime to the (possibly growing) natural number $a$, as well as for the number of pairs of coprime elements of two Beatty sequences. Here are the main results. Let $\alpha>1$ be an irrational number and $N$ be a sufficiently large natural number. Then if the partial quotients of the continued fraction of the number $\alpha$ are limited, then for the number $S_{\alpha,a}(N)$ of elements of the Beatty sequence $[\alpha n]$, $1\leqslant n\leqslant N$, coprime to the number $a$, the following asymptotic formula holds $$ S_{\alpha,a}(N)=N\frac{\varphi(a)}{a} + O\left(\min(\sigma(a)\ln^3 N, \sqrt{N}\tau( a)(\ln\ln N)^3)\right), $$ where $\tau(a)$ is the number of divisors of $a$ and $\sigma(a)$ is the sum of the divisors of $a$. Let $\alpha>1$ and $\beta>1$ be irrational numbers and $N$ be a sufficiently large natural number. Then if the incomplete quotients of continued fractions of the numbers $\alpha$ and $\beta$ are bounded, then for the number $S_{\alpha,\beta}(N)$ of pairs of coprime elements of Beatty sequences $[\alpha m]$, $1\leqslant m\leqslant N$, and $[\beta n]$, $1\leqslant n\leqslant N$, the following asymptotic formula holds $$ S_{\alpha,\beta}(N)=\frac{6}{\pi^2}N^2 + O\left(N^{3/2}(\ln\ln N)^6 \right). $$
Keywords: Beatty sequence, coprime numbers, asymptotic formula.
@article{CHEB_2024_25_1_a11,
     author = {A. V. Begunts and D. V. Goryashin},
     title = {On coprime elements of the {Beatty} sequence},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {164--169},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a11/}
}
TY  - JOUR
AU  - A. V. Begunts
AU  - D. V. Goryashin
TI  - On coprime elements of the Beatty sequence
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 164
EP  - 169
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a11/
LA  - ru
ID  - CHEB_2024_25_1_a11
ER  - 
%0 Journal Article
%A A. V. Begunts
%A D. V. Goryashin
%T On coprime elements of the Beatty sequence
%J Čebyševskij sbornik
%D 2024
%P 164-169
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a11/
%G ru
%F CHEB_2024_25_1_a11
A. V. Begunts; D. V. Goryashin. On coprime elements of the Beatty sequence. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 164-169. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a11/

[1] Begunts, A. V., Goryashin, D. V., “On the values of Beatty sequence in an arithmetic progression”, Chebyshevskii Sbornik, 21:1 (2020), 364–367 | DOI | DOI | MR

[2] Begunts, A. V., Goryashin, D. V., “Topical problems concerning Beatty sequences”, Chebyshevskii Sbornik, 18:4 (2017), 97–105 | DOI | MR

[3] Vinogradov, I. M., Fundamentals of Number Theory, Nauka, M., 1981, 176 pp. | MR