Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 16-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of classifying integer quadratic forms has a long history, during which many mathematicians have contributed to its solution. Binary forms were comprehensively studied by Gauss. He and later researchers also outlined the main ways to solve the problem of classifying ternary forms and forms of higher dimensions. The greatest achievements of the subsequent period were the deep development of the theory of rational quadratic forms and the complete classification of indefinite forms in dimensions 3 and higher by Eichler in terms of spinor genera. The paper proposes an algorithm for calculating non-equivalent quadratic forms corresponding to the faces of the Voronoi domain of the second perfect form in many variables, and using this algorithm, all corresponding non-equivalent quadratic forms are calculated.
Keywords: quadratic forms, perfect forms, Voronoi domain, Voronoi neighborhood, improved Voronoi algorithm.
@article{CHEB_2024_25_1_a1,
     author = {O. Kh. Gulomov},
     title = {Quadratic forms corresponding to the faces of the {Voronoi} domain of perfect form in six variables},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {16--25},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a1/}
}
TY  - JOUR
AU  - O. Kh. Gulomov
TI  - Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 16
EP  - 25
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a1/
LA  - ru
ID  - CHEB_2024_25_1_a1
ER  - 
%0 Journal Article
%A O. Kh. Gulomov
%T Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables
%J Čebyševskij sbornik
%D 2024
%P 16-25
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a1/
%G ru
%F CHEB_2024_25_1_a1
O. Kh. Gulomov. Quadratic forms corresponding to the faces of the Voronoi domain of perfect form in six variables. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 16-25. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a1/

[1] Delone, B. N., “Geometry of positive quadratic forms. Part II”, Uspekhi Mat. Nauk, 1938, no. 4, 102–164

[2] Ryshkov S. S., Baranovskii E. P., “Classical methods of the theory of lattice packings”, Uspekhi Mat. Nauk, 34:4(202) (1979), 3–63 | MR | Zbl

[3] Korkine A., Zolotareff G., “Sur les formes quadratiques”, Math. Ann., 1873, 366–389 ; Полное собр. соч. Е.И.Золотарева, т. 1, Изд-во АН СССР, 1931 | DOI | MR

[4] Korkine A., Zolotareff G., “Sur les formes quadratiques positives”, Math. Ann., 11 (1877), 242-292 ; Полное собр. соч. Е.И.Золотарева, т. 1, Изд-во АН СССР, 375–434 | DOI | MR

[5] Voronoi, G., “Sur quelgues proprietes des formes quadratiques positives par-faites”, J. reine und angew. Math., 133 (1907), 97–178 | MR

[6] Barnes E. S., “The complete enumeration of extreme senary forms”, Philos. Trans Roy. Soc. London, A249:A969 (1957), 461–506 | MR | Zbl

[7] Minkowski H., “Diskontinui tetsbereich fur Arithmetische Aquivalenz”, J. reine and angev. Math., 129 (1905), 220–284 | DOI | MR

[8] Rogers C. A., Packing and Covering, Cambridge Tracts in Mathematics and Mathematical Physics, 54, Cambridge University Press, 1964, viii+109 pp. ; Rodzhers K., Ukladki i pokrytiya, M., 1968, 134 pp. | MR | Zbl

[9] Ryshkov S. S., Basic extremal problems in the geometry of positive quadratic forms, Doctoral dissertation, M., 1970, 171 pp.

[10] Gulomov O. Kh., “The neighborhood of the Voronoi main perfect form from five variables”, Chebyshevskii Sbornik, 241 (2023), 219–227 | DOI | MR | Zbl

[11] Gulomov O. Kh., Khudayarov B. A., Ruzmetov K. Sh., Turaev F. Zh., “Quadratic forms related to the voronoi's domain faces of the second perfect form in seven variables”, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithmsthis link is disabled, 28:1 (2021), 15–23 | MR | Zbl

[12] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, M., 1974, 808 pp. (in Russian) | MR

[13] Shadimetov Kh. M., Optimal lattice quadrature and cubature formulas in Sobolev spaces, Fan technology, Tashkent, 2019, 224 pp.

[14] Shadimetov Kh. M., Gulomov O. Kh., “Computing Perfect Forms in Five Variables Using the Improved Voronoi Algorithm”, AIP Conference Proceedings, 2781 (2023), 020047 | DOI | MR

[15] Shadimetov Kh. M., Hayotov A. R., Karimov R. S., “Optimization of Explicit Difference Methods in the Hilbert Space $W_2^{(2,1)}$”, AIP Conference Proceedings, 2781 (2023), 00054