Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_1_a0, author = {M. G. Bashmakova and N. V. Sycheva}, title = {On some methods of evaluating irrationality measure of the function $\arctan x$ values}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {5--15}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a0/} }
TY - JOUR AU - M. G. Bashmakova AU - N. V. Sycheva TI - On some methods of evaluating irrationality measure of the function $\arctan x$ values JO - Čebyševskij sbornik PY - 2024 SP - 5 EP - 15 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a0/ LA - ru ID - CHEB_2024_25_1_a0 ER -
M. G. Bashmakova; N. V. Sycheva. On some methods of evaluating irrationality measure of the function $\arctan x$ values. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a0/
[1] Bateman, H., Erdélyi, A., Higher transcendental functions, Mc graw-hill book company, inc., New York-Toronto-London, 1953, 456 pp. | MR | MR
[2] Huttner M., “Irrationalité de certaines integrals hypergéométriques”, Journal of Number Theory, 26 (1987), 166–178 | DOI | MR | Zbl
[3] Heimonen A., Matala-Aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81 (1993), 183–202 | DOI | MR | Zbl
[4] Heimonen A.Matala-Aho T., Väänänen K., “An application of Jacobi type polynomials to irrationality measures”, Bulletin of the Australian mathematical society, 50:2 (1994), 225–243 | DOI | MR | Zbl
[5] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arithm., LXIII:4 (1993), 335–349 | DOI | MR | Zbl
[6] Chudnovsky G. V., “On the method of Thue-Siegel”, Annals of math., 117:2 (1983), 325–382 | DOI | MR | Zbl
[7] Salikhov, V. Kh. Zolotukhina E. S., Bashmakova M. G., Application of symmetric integrals in the theory of Diophantine approximations, monograph, BSTU, Bryank, 2021, 124 pp. (in russian)
[8] Salikhov, V. Kh., “On the irrationality measure of $\ln 3$”, Doclady mathematics, 76:3 (2007), 955–957 | MR | Zbl
[9] Salikhov, V. Kh., “On the irrationality measure of $\pi$”, Russian Mathematical Surveys, 63:3 (2008), 570–572 | DOI | DOI | MR | Zbl | Zbl
[10] Zudilin W., Zeilbergerger D., “The Irrationality Measure of Pi is at most 7.103205334137..”, Mosc. J. of Comb. Number Theory, 9:4 (2020), 407–419 | DOI | MR | Zbl
[11] Tomashevskaya, E. B., “On the measure of irrationality of the number $\ln 5+\frac{\pi}{2}$ and some other numbers”, Chebyshevskii sbornic, 8:2 (2007), 97–108 (in russian) | MR | Zbl
[12] Tomashevskaya, E. B., On Diophantine approximations of the values of some analytic functions, dissertation for the degree of candidate of sciences - 01.01.06 “Mathematical logic, algebra and number theory”, BSTU, Bryansk, 2009, 99 pp. (in russian)
[13] Salnikova, E. S., “Diophantine approximations of $\log 2$ and other logarithms”, Mathematical Notes, 83:3 (2008), 389–398 | DOI | MR | MR | Zbl
[14] Viola C., Zudilin W., “Hypergeometric transformations of linear forms in one logarithm”, Func. Approx. Comment. Math., 39:2 (2008), 211–222 | MR | Zbl
[15] Bashmakova, M. G., “Approximation of values of the Gauss hypergeometric function by rational fractions”, Mathematical Notes, 88:6 (2010), 785–797 | DOI | DOI | MR | Zbl
[16] Bashmakova, M. G. Zolotukhina, E. S., “On irrationality measure of the numbers $\sqrt{d}\ln\frac{\sqrt{d}+1}{\sqrt{d}-1}$”, Chebyshevskii sbornic, 18:1(61) (2017), 29–43 (in russian) | DOI | MR | Zbl
[17] Bashmakova, M. G., Zolotukhina, E. S., “On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}$ and $\frac{1}{\sqrt{k}}\arctan\frac{1}{\sqrt{k}}$”, Chebyshevskii sbornic, 19:2(66) (2018), 15–29 (in russian) | DOI | MR | Zbl
[18] Zudilin W., “One of the numbers $\zeta (5), \zeta(7), \zeta(11) $ is irrational”, Uspekhi Matematicheskikh Nauk, 56:4 (2020), 149–150 | DOI | MR
[19] Marcovecchio R., “The Rhin-Viola method for $\log 2$”, Acta Arithm., 139:2 (2009), 147–184 | DOI | MR | Zbl
[20] Salikhov, V. Kh., Bashmakova, M. G., “On irrationality measure of $\arctan\frac{1}{3}$”, Russian mathematics, 2019, no. 1, 69–75 | Zbl
[21] Wu Q., Wang L., “On the irrationality measure of $\log 3$”, Journal of number theory, 142 (2014), 264–273 | DOI | MR | Zbl
[22] Salikhov, V. Kh., Bashmakova, M. G., “On irrationality measure of $\arctan\frac{1}{2}$”, Chebyshevskii sbornic, 20:4 (2019), 58–68 (in russian) | MR | Zbl
[23] Salikhov, V. Kh., Bashmakova, M. G., “On irrationality measure of some values of $\arctan\frac{1}{n}$”, Russian Mathematics, 64:12 (2020), 29–37 | MR | Zbl
[24] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. of computation, 2002, no. 72(242), 901–911 | MR | Zbl
[25] Salikhov, V. Kh., Bashmakova, M. G., “On irrationality measure of $\arctan \frac{1}{6}, \arctan \frac{1}{10}$”, Algebra, number theory and discrete geometry: modern problems, applications and problems of history, Collection of works of XVIII international Conference, dedicated to the centenary of the birth of professors B.M.Brdikhina, V.Y. Nechaeva and S.B.Stechkina, Tolstoy Tula state pedagogical University, Tula, 2020, 264–266 (in russian)
[26] Salikhov V. Kh. Bashmakova M. G., “On rational approximations for some values of $\arctan\frac{s}{r}$ for natural $s$ and $r, s r$”, Moscow journal of combinatorics and number theory, 11:2 (2022), 181–188 | DOI | MR | Zbl