Nearly trans-Sasakian almost $C(\lambda)$-manifolds
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 153-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nearly trans-Sasakian manifolds, which are almost $C(\lambda)$-manifolds, are considered. On the space of the adjoint G-structure, the components of the Riemannian curvature tensor, the Ricci tensor of the nearly trans-Sasakian manifolds, and the almost $C(\lambda)$-manifolds are obtained. Identities are obtained that are satisfied by the Ricci tensor of nearly trans-Sasakian manifolds. It is proved that a Ricci-flat almost $C(\lambda)$-manifold is locally equivalent to the product of a Ricci-flat Kähler manifold and a real line. Identities are obtained that are satisfied by the Ricci tensor of an almost $C(\lambda)$-manifold. It is proved that the Ricci curvature of an almost $C(\lambda)$-manifold in the direction of the structure vector is equal to zero if and only if it is cosymplectic, and hence locally equivalent to the product of a Kähler manifold and a real line. An identity is obtained that is satisfied by the Riemannian curvature tensor of a nearly trans-Sasakian manifold, which is an almost $C(\lambda)$-manifold. It is proved that for a nearly trans-Sasakian manifold M the following conditions are equivalent: 1) the manifold M is an almost $C(\lambda)$-manifold; 2) the manifold M is a closely cosymplectic manifold; 3) the manifold M is locally equivalent to the product of a nearly Kähler manifold and the real line. In the case when the manifold M is a trans-Sasakian almost $C(\lambda)$-manifold, the manifold M is cosymplectic, and hence locally equivalent to the product of a Kähler manifold and a real line. For an NTS-manifold of dimension greater than three, which is almost a $C(\lambda)$-manifold, the pointwise constancy of the $\Phi$-holomorphic sectional curvature implies global constancy. A complete classification of such manifolds is obtained.
Keywords: nearly trans-Sasakian manifold, almost $C(\lambda)$-manifold, Kenmotsu manifold, cosymplectic manifold, Sasakian manifold.
@article{CHEB_2023_24_5_a9,
     author = {A. R. Rustanov and G. V. Teplyakova and S. V. Kharitonova},
     title = {Nearly {trans-Sasakian} almost $C(\lambda)$-manifolds},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a9/}
}
TY  - JOUR
AU  - A. R. Rustanov
AU  - G. V. Teplyakova
AU  - S. V. Kharitonova
TI  - Nearly trans-Sasakian almost $C(\lambda)$-manifolds
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 153
EP  - 166
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a9/
LA  - ru
ID  - CHEB_2023_24_5_a9
ER  - 
%0 Journal Article
%A A. R. Rustanov
%A G. V. Teplyakova
%A S. V. Kharitonova
%T Nearly trans-Sasakian almost $C(\lambda)$-manifolds
%J Čebyševskij sbornik
%D 2023
%P 153-166
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a9/
%G ru
%F CHEB_2023_24_5_a9
A. R. Rustanov; G. V. Teplyakova; S. V. Kharitonova. Nearly trans-Sasakian almost $C(\lambda)$-manifolds. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 153-166. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a9/

[1] Janssen D., Vanhecke L., “Almost contact structures and curvature tensors”, Kodai Math. J., 4 (1981), 1–27 | DOI | MR | Zbl

[2] Olszak Z., Rosca R., “Normal locally conformal almost cosymplectic manifolds”, Publ. Math. Debrecen, 39 (1991), 315–323 | DOI | MR | Zbl

[3] Kharitonova, S. V., “Almost $C(\lambda)$-manifolds”, J. Math. Sci., 177:5 (2011), 742–747 | DOI | MR | Zbl

[4] Ali Akbar, “Some Results on Almost $C(\lambda)$-manifolds”, International J. of Math. Sci. and Engg. Appls., 7:1 (2013), 255–260

[5] Ali Akbar, Sarkar A., “On the Conharmonic and Concircular curvature tensors of almost $C(\lambda)$-Manifolds”, Int. J. Adv. Math. Sci., 1:3 (2013), 134–138 | DOI | MR

[6] Ali Akbar, Sarkar A., “Almost $C(\lambda)$-manifolds admitting $W_2$ curvature tensor”, J. Rajashtan Acad. Phys. Sci., 13:1 (2014), 31–38 | MR | Zbl

[7] Rustanov, A. R., Kharitonova, S. V., Kazakova, O. N., “About two classes of almost $C(\lambda)$-manifolds”, Vestnik OSU, 2015, no. 3, 228–231 (in Russian)

[8] Ashoka S. R., Bagewadib S. C., Gurupadavva Ingalahallic, “Curvature tensor of almost $C(\lambda)$-manifolds”, Malaya J. Math., 2:1 (2014), 10–15 | DOI | MR | Zbl

[9] Ashoka S. R., Bagewadib S. C., Gurupadavva Ingalahallic, “A Study on Ricci Solitons in almost $C(\lambda)$ Manifolds”, Sohag J. Math., 3:2 (2016), 83–88 | DOI | MR

[10] Chaturvedi B. B., Gupta B. G., “C-Bochner curvature tensor on almost $C(\lambda)$-manifolds”, Palestine J. Math., 8:2 (2019), 258–265 | MR | Zbl

[11] Atceken M., Yildirim U., “On curvature tensors of an almost $C(\alpha)$-manifold”, Int. J. Phys. Math. Sci., 5:1 (2015), 53–61 | MR

[12] Atceken M., Yildirim U., “Almost $c(\alpha)$-manifolds satisfying certain curvature conditions”, Adv. Stud. Contemp. Math., 26:3 (2016), 567–578 | MR | Zbl

[13] Atceken M., Yildirim U., “On almost $C(\alpha)$-manifold satisfying certain conditions on the concircular curvature tensor”, Pure Appl. Math. J., Special Issue: Appl. Geom., 4:1-2 (2015), 31–34 | DOI | MR

[14] Yildirim U., “On almost $C(\alpha)$-manifold satisfying some conditions on the Weyl projective curvature tensor”, J. Adv. Math., 15 (2018), 8145–8154 | DOI

[15] Rustanov, A. R., Polkina, E. A., Kharitonova, S. V., “On some aspects of the geometry of almost $C(\lambda)$-manifolds”, Izv. Vuzov. Sev.-Kav. Reg. Nat. Sci., 2020:3, 19–24 | DOI

[16] Rustanov A. R., Polkina E. A., Kharitonova S. V., “Projective invariants of almost $C(\lambda)$-manifolds”, Ann. Glob. Anal. Geom., 61 (2022), 459–467 | DOI | MR | Zbl

[17] Kirichenko, V. F., Rustanov, A. R., “Differential geometry of quasi-Sasakian manifolds”, Sb. Math., 193:7-8 (2002), 1173–1201 | DOI | DOI | MR | Zbl

[18] Kirichenko, V. F., Differential-geometric structures on manifolds, Pechatnyy dom, Odessa, 2013, 458 pp. (in Russian)

[19] Rustanov A. R., Melekhina T. L., Kharitonova S. V., “On the geometry of nearly trans-Sasakian manifolds”, Turk. J. Math., 47:4 (2023), 7 | DOI | MR

[20] Gray A., Hervella L., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure ed Appl., 326:123 (1980), 35–58 | DOI | MR