Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a6, author = {Yu. Yu. Linke}, title = {Mean function estimation for a noisy random process under a sparse data condition}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {112--125}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/} }
Yu. Yu. Linke. Mean function estimation for a noisy random process under a sparse data condition. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 112-125. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/
[1] Borisov I. S., Linke Yu. Yu., Ruzankin P. S., “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR | Zbl
[2] Bunea F., Ivanescu A. E., Wegkamp M. H., “Adaptive inference for the mean of a Gaussian process in functional data”, J. R. Stat. Soc. Ser. B Stat. Methodol., 73:4 (2011), 531–558 | DOI | MR | Zbl
[3] Cuevas A., “A partial overview of the theory of statistics with functional data”, J. Stat. Plan. Inference, 147:4 (2014), 1–23 | DOI | MR | Zbl
[4] James G. M., Hastie T. J., “Functional linear discriminant analysis for irregularly sampled curves”, J. R. Stat. Soc. Ser. B Stat. Methodol., 63:3 (2001), 533–550 https://www.jstor.org/stable/2680587 | DOI | MR | Zbl
[5] Hall P., Müller H.-G., Wang J.-L., “Properties of principal component methods for functional and longitudinal data analysis”, Ann. Statist., 34:3 (2006), 1493–1517 https://www.jstor.org/stable/25463465 | MR | Zbl
[6] Hsing T., Eubank R., Theoretical foundations of functional data analysis, with an introduction to linear operators, Wiley, 2015 | DOI | MR | Zbl
[7] Kim S., Zhao Z., “Unified inference for sparse and dense longitudinal models”, Biometrika, 100:1 (2013), 203–212 https://www.jstor.org/stable/43304546 | DOI | MR | Zbl
[8] Kokoszka P., Reimherr M., Introduction to functional data analysis, Chapman and Hall/CRC, 2017 https://www.routledge.com/Introduction-to-Functional-Data-Analysis/Kokoszka-Reimherr/p/book/9781032096599 | MR | Zbl
[9] Li Y., Hsing T., “Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data”, Ann. Statist., 38:6 (2010), 3321–3351 https://www.jstor.org/stable/29765266 | MR | Zbl
[10] Lin Z. Wang J.-L., “Mean and covariance estimation for functional snippets”, J. Amer. Statist. Assoc., 117:537 (2022), 348–360 | DOI | MR | Zbl
[11] Linke Y., Borisov I., Ruzankin P., Kutsenko V., Yarovaya E., Shalnova S., “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693 https://www.mdpi.com/2227-7390/10/15/2693 | DOI
[12] Linke Yu. Yu., Borisov I. S., “Insensitivity of Nadaraya–Watson estimators to design correlation”, Commun. Stat. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR
[13] Linke Yu. Yu., “Asymptotic properties of one-step M-estimators”, Commun. Stat. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl
[14] Linke Yu. Yu., Borisov I. S., “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120:1 (2017), 87–94 | DOI | MR | Zbl
[15] Linke Yu. Yu., “Asymptotic normality of one-step M-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129:10 (2017), 216–221 | DOI | MR | Zbl
[16] Linke Yu. Yu., Borisov I. S., “An approach to constructing explicit estimators in nonlinear regression”, Siberian Adv. Math., 33:4 (2023), 338–346 | DOI | MR
[17] Muller H.-G., “Functional modelling and classification of longitudinal data”, Scand. J. Statist., 32:2 (2005), 223–246 | DOI | MR
[18] Song Q., Liu R., Shao Q., Yang L., “A simultaneous confidence band for dense longitudinal regression”, Commun. Stat. Theory Methods, 43:24 (2014), 5195–5210 | DOI | MR | Zbl
[19] Wang J.-L., Chiou J.-M., Muller H.-G., “Review of functional data analysis”, Annu. Rev. Statist., 3 (2016), 257–295 | DOI
[20] Wu H., Zhang J.-T., Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches, John Wiley and Sons, 2006 https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-041715-033624 | Zbl
[21] Yao F., “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR | Zbl
[22] Yao F., Muller H.-G., Wang J.-L., “Functional data analysis for sparse longitudinal data”, J. Amer. Statist. Assoc., 100:470 (2005), 577–590 https://www.tandfonline.com/doi/abs/10.1198/016214504000001745 | DOI | MR | Zbl
[23] Zhang J.-T., Chen J., “Statistical inferences for functional data”, Ann. Statist., 35:3 (2007), 1052–1079 https://www.jstor.org/stable/25463592 | MR | Zbl
[24] Zhang X., Wang J.-L., “Optimal weighting schemes for longitudinal and functional data”, Stat. Prob. Lett., 138:7 (2018), 165–170 | DOI | MR | Zbl
[25] Zhang X., Wang J.-L., “From sparse to dense functional data and beyond”, Ann. Statist., 44:5 (2016), 2281–2321 https://www.jstor.org/stable/43974716 | MR | Zbl
[26] Zheng S., Yang L., Hardle W., “A smooth simultaneous confidence corridor for the mean of sparse functional data”, J. Amer. Statist. Assoc., 109:506 (2014), 661–673 | DOI | MR | Zbl
[27] Zhou L., Lin H., Liang H., “Efficient estimation of the nonparametric mean and covariance functions for longitudinal and sparse functional data”, J. Amer. Statist. Assoc., 113:524 (2018), 1550–1564 | DOI | MR | Zbl
[28] Linke Yu. Yu., “Towards insensitivity of Nadaraya–Watson estimators with respect to design correlation”, Theory Probab. Appl., 68:2 (2023), 236–252 (in Russian) | DOI
[29] Linke Yu. Yu., “Asymptotic properties of one-step weighted M-estimators with application to some regression problems”, Theory Probab. Appl., 62:3 (2017), 373–398 | DOI | DOI | MR
[30] Linke Yu. Yu., Borisov I. S., “Constructing explicit estimators in nonlinear regression models”, Theory Probab. Appl., 63:1 (2018), 22–44 | DOI | DOI | MR | Zbl