Mean function estimation for a noisy random process under a sparse data condition
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 112-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a regression statement of the problem of estimating the mean function of some almost sure continuous random process, when noisy values of independent copies of this random process are observed in some known sets of time points (generally speaking, random). Moreover, the size of observations for each of the copies is random, and the total collection of the time points for all series does not necessarily consist of independent and identically distributed random variables. This setting includes two of the most popular sparse data variants in the scientific literature, in which ever the sizes of observations in the series are independent identically distributed random variables, or the sizes of observations in each series are nonrandom and uniformly bounded over all series. The paper proposes new kernel-type estimators for the mean function of a random process. The uniform consistency of the new kernel estimators is proved under very weak and universal restrictions regarding the stochastic nature of observed time points: it is only required that the entire set of these points with a high probability would form a refining partition of the original random process domain.
Keywords: nonparametric regression, mean function estimation, sparse functional data, kernel estimation, uniform consistency.
@article{CHEB_2023_24_5_a6,
     author = {Yu. Yu. Linke},
     title = {Mean function estimation for a noisy random process under a sparse data condition},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {112--125},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
TI  - Mean function estimation for a noisy random process under a sparse data condition
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 112
EP  - 125
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/
LA  - ru
ID  - CHEB_2023_24_5_a6
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%T Mean function estimation for a noisy random process under a sparse data condition
%J Čebyševskij sbornik
%D 2023
%P 112-125
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/
%G ru
%F CHEB_2023_24_5_a6
Yu. Yu. Linke. Mean function estimation for a noisy random process under a sparse data condition. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 112-125. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a6/

[1] Borisov I. S., Linke Yu. Yu., Ruzankin P. S., “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR | Zbl

[2] Bunea F., Ivanescu A. E., Wegkamp M. H., “Adaptive inference for the mean of a Gaussian process in functional data”, J. R. Stat. Soc. Ser. B Stat. Methodol., 73:4 (2011), 531–558 | DOI | MR | Zbl

[3] Cuevas A., “A partial overview of the theory of statistics with functional data”, J. Stat. Plan. Inference, 147:4 (2014), 1–23 | DOI | MR | Zbl

[4] James G. M., Hastie T. J., “Functional linear discriminant analysis for irregularly sampled curves”, J. R. Stat. Soc. Ser. B Stat. Methodol., 63:3 (2001), 533–550 https://www.jstor.org/stable/2680587 | DOI | MR | Zbl

[5] Hall P., Müller H.-G., Wang J.-L., “Properties of principal component methods for functional and longitudinal data analysis”, Ann. Statist., 34:3 (2006), 1493–1517 https://www.jstor.org/stable/25463465 | MR | Zbl

[6] Hsing T., Eubank R., Theoretical foundations of functional data analysis, with an introduction to linear operators, Wiley, 2015 | DOI | MR | Zbl

[7] Kim S., Zhao Z., “Unified inference for sparse and dense longitudinal models”, Biometrika, 100:1 (2013), 203–212 https://www.jstor.org/stable/43304546 | DOI | MR | Zbl

[8] Kokoszka P., Reimherr M., Introduction to functional data analysis, Chapman and Hall/CRC, 2017 https://www.routledge.com/Introduction-to-Functional-Data-Analysis/Kokoszka-Reimherr/p/book/9781032096599 | MR | Zbl

[9] Li Y., Hsing T., “Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data”, Ann. Statist., 38:6 (2010), 3321–3351 https://www.jstor.org/stable/29765266 | MR | Zbl

[10] Lin Z. Wang J.-L., “Mean and covariance estimation for functional snippets”, J. Amer. Statist. Assoc., 117:537 (2022), 348–360 | DOI | MR | Zbl

[11] Linke Y., Borisov I., Ruzankin P., Kutsenko V., Yarovaya E., Shalnova S., “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693 https://www.mdpi.com/2227-7390/10/15/2693 | DOI

[12] Linke Yu. Yu., Borisov I. S., “Insensitivity of Nadaraya–Watson estimators to design correlation”, Commun. Stat. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR

[13] Linke Yu. Yu., “Asymptotic properties of one-step M-estimators”, Commun. Stat. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl

[14] Linke Yu. Yu., Borisov I. S., “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120:1 (2017), 87–94 | DOI | MR | Zbl

[15] Linke Yu. Yu., “Asymptotic normality of one-step M-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129:10 (2017), 216–221 | DOI | MR | Zbl

[16] Linke Yu. Yu., Borisov I. S., “An approach to constructing explicit estimators in nonlinear regression”, Siberian Adv. Math., 33:4 (2023), 338–346 | DOI | MR

[17] Muller H.-G., “Functional modelling and classification of longitudinal data”, Scand. J. Statist., 32:2 (2005), 223–246 | DOI | MR

[18] Song Q., Liu R., Shao Q., Yang L., “A simultaneous confidence band for dense longitudinal regression”, Commun. Stat. Theory Methods, 43:24 (2014), 5195–5210 | DOI | MR | Zbl

[19] Wang J.-L., Chiou J.-M., Muller H.-G., “Review of functional data analysis”, Annu. Rev. Statist., 3 (2016), 257–295 | DOI

[20] Wu H., Zhang J.-T., Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches, John Wiley and Sons, 2006 https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-041715-033624 | Zbl

[21] Yao F., “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR | Zbl

[22] Yao F., Muller H.-G., Wang J.-L., “Functional data analysis for sparse longitudinal data”, J. Amer. Statist. Assoc., 100:470 (2005), 577–590 https://www.tandfonline.com/doi/abs/10.1198/016214504000001745 | DOI | MR | Zbl

[23] Zhang J.-T., Chen J., “Statistical inferences for functional data”, Ann. Statist., 35:3 (2007), 1052–1079 https://www.jstor.org/stable/25463592 | MR | Zbl

[24] Zhang X., Wang J.-L., “Optimal weighting schemes for longitudinal and functional data”, Stat. Prob. Lett., 138:7 (2018), 165–170 | DOI | MR | Zbl

[25] Zhang X., Wang J.-L., “From sparse to dense functional data and beyond”, Ann. Statist., 44:5 (2016), 2281–2321 https://www.jstor.org/stable/43974716 | MR | Zbl

[26] Zheng S., Yang L., Hardle W., “A smooth simultaneous confidence corridor for the mean of sparse functional data”, J. Amer. Statist. Assoc., 109:506 (2014), 661–673 | DOI | MR | Zbl

[27] Zhou L., Lin H., Liang H., “Efficient estimation of the nonparametric mean and covariance functions for longitudinal and sparse functional data”, J. Amer. Statist. Assoc., 113:524 (2018), 1550–1564 | DOI | MR | Zbl

[28] Linke Yu. Yu., “Towards insensitivity of Nadaraya–Watson estimators with respect to design correlation”, Theory Probab. Appl., 68:2 (2023), 236–252 (in Russian) | DOI

[29] Linke Yu. Yu., “Asymptotic properties of one-step weighted M-estimators with application to some regression problems”, Theory Probab. Appl., 62:3 (2017), 373–398 | DOI | DOI | MR

[30] Linke Yu. Yu., Borisov I. S., “Constructing explicit estimators in nonlinear regression models”, Theory Probab. Appl., 63:1 (2018), 22–44 | DOI | DOI | MR | Zbl