A proof of the L'H\^opital's rule
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 49-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a new proof of the L'Hôpital's rule proposed for calculus lecturers is presented. The according theorem is formulated and proved for the six types of limit: $x \to a$, $x \to a + 0$, $x \to a - 0$, $x \to +\infty$, $x \to -\infty$, $x \to +\infty$, for the two indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$ and also for four values of limit $A \in (-\infty, +\infty)$, $A = -\infty$, $A = +\infty$, $A = \infty$. Thus, the theorem covers $6 * 2 * 4 = 48$ cases of the L'Hôpital's rule. The presented proof of the theorem differs from the traditional ones by using not only the Cachy definition of limit a function but also the Heine one. The single partial limit theorem is used as the important auxiliary statement allowing to apply the Heine definition of limit. This statement also allows to apply arithmetic properties of sequence limits to the proof of the indeterminate form $\frac{\infty}{\infty}$ and the limit $x \to a + 0$, i.e. for the case where the most significant simplification is achieved.
Keywords: the L'Hôpital's rule, partial limits, Heine definition of a limit of a function, calculus for the first-year students.
@article{CHEB_2023_24_5_a3,
     author = {I. B. Kazakov},
     title = {A proof of the {L'H\^opital's} rule},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {49--69},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a3/}
}
TY  - JOUR
AU  - I. B. Kazakov
TI  - A proof of the L'H\^opital's rule
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 49
EP  - 69
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a3/
LA  - ru
ID  - CHEB_2023_24_5_a3
ER  - 
%0 Journal Article
%A I. B. Kazakov
%T A proof of the L'H\^opital's rule
%J Čebyševskij sbornik
%D 2023
%P 49-69
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a3/
%G ru
%F CHEB_2023_24_5_a3
I. B. Kazakov. A proof of the L'H\^opital's rule. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 49-69. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a3/

[1] Aleksandryan, R. A., Mirzahanyan, E. A., General topology, Vysshaya shkola, Moscow, Russia, 1979, 336 pp.

[2] Besov O. V., Lectures on calculus, FIZMATLIT, Moscow, Russia, 2014, 480 pp.

[3] Zorich, V. A., Calculus, v. 1, 10th edition, MCCME, Moscow, Russia, 2019, xii+564 pp. | MR

[4] Ivanov, G. E., Lectures on calculus, MIPT, Moscow, Russia, 2017, 340 pp.

[5] Kantorovich, L. V., Akilov, G. P., Functional analysis, Nauka, Moscow, Russia, 1984, 752 pp. | MR

[6] Kudryavcev, L. D., The course of calculus, v. 1, 2nd edition, Vysshaya shkola, Moscow, Russia, 1988, 713 pp.

[7] Lavrov, I. A., Maksimova, L. L., Problems in Set Theory, Mathematical Logic and the Theory of Algorithms, Nauka, Moscow, Russia, 1975, 240 pp. | MR

[8] Nikol'skij, S. M., The course of calculus, 6th edition, FIZMATLIT, Moscow, Russia, 2001, 592 pp.

[9] Fihtengol'c, G. M., The course of differential and integral calculus, Nauka, Moscow, Russia, 1966, 607 pp.

[10] Engel'king, R., General topology, Mir, Moscow, Russia, 1986, 752 pp. | MR

[11] Boas R. P., “Counterexamples to L'Hôpital's rule”, American Mathematical Monthly, 93:9 (1986), 644–645 | MR | Zbl

[12] Lee C. M., “Generalizations of l'Hôpital's rule”, Proc. Amer. Math. Soc., 66:2 (1977), 315–320 | MR | Zbl

[13] Tausk D. V., Counterexample to l'Hôpital's rule https://www.ime.usp.br/t̃ausk/texts/CounterExampleLHospital.pdf

[14] Taylor A. E., “L'Hospital's Rule”, The American Mathematical Monthly, 59:1 (1952), 20–24 | DOI | MR | Zbl

[15] Vianello M., “A generalization of l'Hôpital's rule via absolute continuity and Banach modules”, Real Analysis Exchange, 18:2 (1993), 557–567 | DOI | MR | Zbl

[16] Vyborny R., Nester R., “L'Hôpital's rule, a counterexample”, Elemente der Mathematik, 44:5 (1989), 116–121 | MR | Zbl