Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a27, author = {A. N. Chukanov and A. Ya. Kanel-Belov and A. A. Yakovenko and E. V. Tsoy and M. Y. Modenov}, title = {The {Otsu} method for assessing porosity and distribution of structural defects in the image of computed tomography of {SLM} products}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {357--372}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a27/} }
TY - JOUR AU - A. N. Chukanov AU - A. Ya. Kanel-Belov AU - A. A. Yakovenko AU - E. V. Tsoy AU - M. Y. Modenov TI - The Otsu method for assessing porosity and distribution of structural defects in the image of computed tomography of SLM products JO - Čebyševskij sbornik PY - 2023 SP - 357 EP - 372 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a27/ LA - ru ID - CHEB_2023_24_5_a27 ER -
%0 Journal Article %A A. N. Chukanov %A A. Ya. Kanel-Belov %A A. A. Yakovenko %A E. V. Tsoy %A M. Y. Modenov %T The Otsu method for assessing porosity and distribution of structural defects in the image of computed tomography of SLM products %J Čebyševskij sbornik %D 2023 %P 357-372 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a27/ %G ru %F CHEB_2023_24_5_a27
A. N. Chukanov; A. Ya. Kanel-Belov; A. A. Yakovenko; E. V. Tsoy; M. Y. Modenov. The Otsu method for assessing porosity and distribution of structural defects in the image of computed tomography of SLM products. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 357-372. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a27/
[1] Popovich A.A., Sufiyarov V.Sh., Borisov E.V., Polozov I.A., Masailo D.V., Grigoriev A.V., “Anisotropy of mechanical properties of products manufactured by selective laser melting of powder materials”, News of universities. Powder metallurgy and functional coatings, 2016, no. 3, 4–11
[2] Simonelli M., Tse Y.Y., Tuck C., “Effect of the build orientation on the Mechanical Properties and Fracture Modes of SLM Ti-6Al-4V”, Mater. Sci. Eng. A, 616 (2014), 1–11 | DOI
[3] Vroncken B., Thijs L., Kruth J.P., Van Hambeeck J., “Microstructure and Mechanical Properties of novel $\beta$ titanium metallic composite by selective laser melting”, Acta Mater., 68 (2014), 150–158 | DOI
[4] Frazier W.E., “Metal additive manufacturing”, A review. J. Mater. Eng. Perform., 23:6 (2014), 1917–1928 | DOI
[5] Wu M.W., Lai P.H., Chen J.K., “Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy”, Mater.Sci. Eng.: A, 650 (2016), 295–299 | DOI
[6] Chukanov A.N., “Anisotropy of deformation in layered laser synthesis of elements”, Promising technologies and materials, Mater. All-Russian. NPC with international studies (Sevastopol, 14-16.10.2020), Scientific publishing house, SevSU, Sevastopol, 2020, 169–174, 222 pp.
[7] Chukanov A.N., “Influence of orientation of products of additive technologies on their deformation anisotropy”, Scientific readings named after chl.-corr. RAS I.A. Odinga “Mechanical properties of modern structural materials”, Sat. mater. (Moscow. September 17-18, 2020), IMET RAS, M., 2020, 79–80, 194 pp.
[8] Chukanov A.N., “Anisotropy of physico-mechanical properties in layered grain synthesis”, ISTK “Modern problems and directions of development of metallurgy and heat treatment of metals and alloys”, dedicated. 150 years old. since the day of birth. Academician A.A. Baykova, Collection of scientific papers. articles (09/18/2020)/ South-West State University), South Ural State University, Kursk, 2020, 244–247, 271 pp.
[9] Chukanov A.N., Tereshin V.A., Tsoi E.V., “Properties of products obtained by selective laser synthesis. 2. Products of cellular structures”, XIII-I MNTK "Modern automotive materials and technologies, SAMIT-2021, Collection of articles (11/20/2021), Yugo-Zap. gos. un-t, Kursk, 2021, 338–340
[10] Chukanov A.N., Tereshin V.A., Tsoi E.V., “Properties of products obtained by selective laser synthesis. 1. “Solid” products”, XIII-I MNTK "Modern automotive materials and technologies, SAMIT-2021, Collection of articles (11/20/2021), Yugo-Zap. gos. un-t, Kursk, 2021, 341–346
[11] Matterona J., Random sets and integral geometry, Mir, M., 1978, 320 pp.
[12] Santalo L., Integral geometry and geometric probabilities, Nauka, M., 1983, 360 pp.
[13] Ambartsumyan R.V., Mekke Y., Shtoyan D., Introduction to stochastic geometry, Nauka, M., 1989, 400 pp. | MR
[14] Sergeev N.N., Tereshin V.A., Chukanov A.N., Kolmakov A.G., Yakovenko A.A., Sergeev A.N., Leontiev I.M., Khonelidze D.M., Gvozdev A.E., “Formation of plastic zones near spherical cavity in hardened low-carbon steels under conditions of hydrogen stress corrosion”, Inorganic Materials: Applied Research, 9:4 (2018), 663–669 | DOI
[15] Chukanov A.N., Tereshin V.A., Tsoi E.V., “Mathematical modeling of stress fields in stress-corrosion defects”, Modern materials, technique and technologies, 6(39) (2021), 65–70
[16] Hounsfield G.N., “Computerized transverse axia scanning (tomography). Part 1: Description of system”, British Journal of Radiology, 1973, no. 46, 1016–1022 | DOI
[17] Ketcham R.A., Carlson W.D., “Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences”, Computers Geosciences – Special issue on three-dimensional reconstruction, modelling and visualization of geologic materials, 27:4 (2001), 381–400 | DOI
[18] Van Geet M., Swennen R., Wevers M., “Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography”, Sedimentary Geology, 2000, no. 132, 25–36 | DOI
[19] Eremenko N.M., Muravyeva Yu.A., “Application of X-ray micromography methods for determining porosity in the core of wells”, Oil and gas Geology. Theory and practice, 7:3 (2012) (date of publication: 02/15/2015)
[20] Brandon D., Kaplan U., Microstructure of materials. Methods of research and control, Technosphere, M., 2004, 384 pp.
[21] Van Geet M., Swennen R., David P., “Quantitative coal characterisation by means of microfocus X-ray computer tomography, colour image analysis and back scatter scanning electron microscopy”, International Journal of Coal Geology, 46:1 (2001), 11–25 | DOI
[22] Otsu N., “A threshold selection method from gray-level histograms”, IEEE Trans. Syst. Man. Cybern., 9 (1979), 62–66 | DOI
[23] Yasa E., Kruth J.P., “Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting”, Proced. Eng., 19 (2011), 389–395 | DOI
[24] Gustmann T., Neves A., Kühn U., Gargarella P., Kiminami C.S., Bolfarini C., Eckert J., Pauly S., “Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting”, Addit. Manuf., 11 (2016), 23–31
[25] Marya M., Singh V., Marya S., Hascoet J.Y., “Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part”, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 46 (2015), 1654–1665 | DOI
[26] Liu Z.H., Zhang D.Q., Sing S.L., Chua C.K., Loh L.E., “Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy”, Mater. Charact., 94 (2014), 116–125 | DOI
[27] Dadbakhsh S., Hao S., “Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites”, J. Alloy. Compd., 541 (2012), 328–334 | DOI
[28] Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S., “The metallurgy and processing science of metal additive manufacturing”, Int. Mater. Rev., 6608 (2016), 1–46
[29] Frazier W.E., “Direct digital manufacturing of metallic components: Vision and roadmap”, Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium (Austin, TX, USA, 9–11 August, 2010), 717–732
[30] King W.E., Barth H.D., Castillo V.M., Gallegos G.F., Gibbs J.W., Hahn D.E., Kamath C., Rubenchik A.M., “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing”, J. Mater. Process. Technol., 214 (2014), 2915–2925 | DOI
[31] Körner C., Bauereiß A., Attar E., “Fundamental consolidation mechanisms during selective beam melting of powders”, Model. Simul. Mater. Sci. Eng., 21 (2013), 1–18 | DOI
[32] Zhong Y., Liu L., Wikman S., Cui D., Shen Z., “Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting”, J. Nucl. Mater., 470 (2016), 170–178 | DOI