Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a25, author = {N. D. Tutyshkin}, title = {Modeling of deformation damage of metals in case of plastic compression deformations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {331--342}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a25/} }
N. D. Tutyshkin. Modeling of deformation damage of metals in case of plastic compression deformations. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 331-342. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a25/
[1] McClintock F., Argon A., Deformation and destruction of materials, Mir, M., 1970, 444 pp. (In Russ.)
[2] McClintock F., “A criterion for ductile fracture by the growth of holes”, J. Appl. Mech., 90 (1968), 363–371 | DOI
[3] Bao Y., Wierzbicki T., “On fracture locus in the equivalent strain and stress triaxiality space”, Int. J. Mech. Sci., 46 (2004), 81–98 | DOI
[4] Ekobori T., Physics and mechanics of destruction and strength of solids, Metallurgy, M., 1971, 264 pp. (In Russ.)
[5] Brünig M., “An anisotropic ductile damage model based on irreversible thermodynamics”, Int. J. Plasticity, 19 (2003), 1679–1713 | DOI | Zbl
[6] Bammann D., Solanki K., “On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material”, Int. J. Plasticity, 26 (2010), 775–793 | DOI | Zbl
[7] Khan A., Liu H., “A new approach for ductile fracture prediction on Al 2024-T351 alloy”, Int. J. Plasticity, 35 (2012), 1–12 | DOI
[8] Hosokava A., Wilkinson D., Kang J., Maire E., “Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography”, Int. J. Acta Materialia, 61 (2013), 1021–1036 | DOI
[9] Tutyshkin N., Müller W., Wille R., Zapara M., “Strain-induced damage of metals under large plastic deformation: Theoretical framework and experiments”, Int. J. of Plasticity, 59 (2014), 133–151 | DOI
[10] Tutyshkin N.D., Travin V.Yu., “Tensor theory of deformation damage”, Chebyshevskii sbornik, 23:5 (2022), 320–336 (In Russ.) | DOI | MR | Zbl
[11] Hill R., Mathematical theory of plasticity, State edition of the technical-theoretical literature, M., 1950, 407 pp.
[12] Dunand M., Maertens A., Luo M., Mohr D., “Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part I: Plasticity”, Int. J. Plasticity, 36 (2012), 34–49 | DOI
[13] Luo M., Dunand M., Mohr D., “Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: Ductile fracture.”, Int. J. Plasticity, 32–33, May (2012), 36–58 | DOI
[14] Bao Y., Wierzbicki T., “On the cut-off value of negative triaxiality for fracture”, J. Eng. Fract. Mech., 72 (2005), 1049–1069 | DOI
[15] Zapara M., Tutyshkin N., Müller W., Wille R., “Constitutive equations of a tensorial model for ductile damage of metals”, J. Continuum Mechanics and Thermodynamics, 24 (2012), 697–717 | DOI | MR