Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a24, author = {L. A. Tolokonnikov}, title = {Reflection of a spherical sound wave from an elastic half-space with an adjacent inhomogeneous liquid layer}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {320--330}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a24/} }
TY - JOUR AU - L. A. Tolokonnikov TI - Reflection of a spherical sound wave from an elastic half-space with an adjacent inhomogeneous liquid layer JO - Čebyševskij sbornik PY - 2023 SP - 320 EP - 330 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a24/ LA - ru ID - CHEB_2023_24_5_a24 ER -
L. A. Tolokonnikov. Reflection of a spherical sound wave from an elastic half-space with an adjacent inhomogeneous liquid layer. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 320-330. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a24/
[1] Brekhovskikh, L. M., Waves in layered media, Nauka, M., 1973, 344 pp. (in Russian)
[2] Brekhovskikh, L. M., Godin, O. A., Acoustics of layered media, Nauka, M., 1989, 416 pp. (in Russian)
[3] Ingard U., “On the reflection of a spherical sound wave from an infinite plane”, J. Acoust. Soc. Am., 23:3 (1951), 329–335 | DOI | MR
[4] Magnuson A. H., “Acoustic response in a liquid overlying a homogeneous viscoelastic half-space”, J. Acoust. Soc. Am., 57:5 (1975), 1017–1024 | DOI | Zbl
[5] Lamb Jr., “The transmission of a spherical sound wave through a thin elastic plate”, Ann. Phys., 1:3 (1957), 233–246 | DOI | MR | Zbl
[6] Shenderov, E. L., Wave problems of underwater acoustics, Sudostroenie, L., 1972, 352 pp. (in Russian)
[7] Piquette J. C., “Spherical-wave scattering by a finite-thickness solid plate of infinite lateral extent, with some implications for panel measurements”, J. Acoust. Soc. Am., 83:4 (1988), 1284–1294 | DOI
[8] Piquette J. C., “Interactions of a spherical wave with a bilaminar plate composed of homogeneous and isotropic solid layers”, J. Acoust. Soc. Am., 84:4 (1988), 1526–1535 | DOI
[9] Kurtepov, V. M., “The sound field of a point source in the presence of a thin infinite plate in the medium (discrete spectrum)”, Akust. Zhurnal, 15:4 (1969), 560–566 (in Russian)
[10] Shenderov E. L., “Transmission of a spherical sound wave through an elastic layer”, Akust. Zhurnal, 37:4 (1991), 800–807 (in Russian)
[11] Shushkevich G. Ch., Kiselyova N. N., “Sound field shielding by flat elastic layer and thin unclosed spherical shell”, Informatika, 2014, no. 2, 36–47 (in Russian)
[12] Tolokonnikov, L. A., Nguyen, T. S., “Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating”, Chebyshevskii sbornik, 23:5 (2022), 305–319 (in Russian) | DOI | MR | Zbl
[13] Nowacki, W., Teoria sprezystosci, Mir, M., 1975, 872 pp. (in Russian)
[14] Smirnov, V. I., Higher mathematics course, v. 2, Nauka, M., 1969, 656 pp. (in Russian) | MR