Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a2, author = {A. G. Eliseev and T. A. Ratnikova and D. A. Shaposhnikova}, title = {Regularized asymptotics of the solution of a singularly perturbed {Cauchy} problem for an equation of {Schrodinger} with potential $Q(x)=x^2$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {31--48}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a2/} }
TY - JOUR AU - A. G. Eliseev AU - T. A. Ratnikova AU - D. A. Shaposhnikova TI - Regularized asymptotics of the solution of a singularly perturbed Cauchy problem for an equation of Schrodinger with potential $Q(x)=x^2$ JO - Čebyševskij sbornik PY - 2023 SP - 31 EP - 48 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a2/ LA - ru ID - CHEB_2023_24_5_a2 ER -
%0 Journal Article %A A. G. Eliseev %A T. A. Ratnikova %A D. A. Shaposhnikova %T Regularized asymptotics of the solution of a singularly perturbed Cauchy problem for an equation of Schrodinger with potential $Q(x)=x^2$ %J Čebyševskij sbornik %D 2023 %P 31-48 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a2/ %G ru %F CHEB_2023_24_5_a2
A. G. Eliseev; T. A. Ratnikova; D. A. Shaposhnikova. Regularized asymptotics of the solution of a singularly perturbed Cauchy problem for an equation of Schrodinger with potential $Q(x)=x^2$. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 31-48. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a2/
[1] Lomov S. A., Introduction to the general theory of singular perturbations, Nauka, M., 1981, 398 pp.
[2] Lomov S. A., Lomov I. S., Fundamentals of the mathematical theory of the boundary layer, Moscow University Press, M., 2011, 453 pp.
[3] Lomov S. A., “Asymptotic behavior of solutions of second-order ordinary differential equations containing a small parameter”, Proceedings of MPEI, 1962, no. 42, 99–144
[4] Lomov S. A., “Power boundary layer in problems with a small parameter”, Doklady AN SSSR, 148:3 (1963), 516–519 | Zbl
[5] Lomov S. A., “On the Lighthill Model Equation”, Collection of Scientific Works of the USSR Ministry of Defense, 1964, no. 54, 74–83
[6] Lomov S. A., “Regularization of singular perturbations”, Reports of the scientific and technical conference of MPEI, mathematical section, 1965, 129–133
[7] Lomov S. A., Safonov V. F., “Regularizations and asymptotic solutions for singularly perturbed problems with point singularities of the spectrum of the limit operator”, Ukrainian Mathematical Journal, 36:2 (1984), 172–180 | MR | Zbl
[8] Bobojanov A. A., Safonov V. F., “Regularized asymptotics of solutions of integrodifferent equations with private derivatives with rapidly changing nuclei”, Ufa Mathematical Journal, 10:2 (2018), 3–12 | DOI | MR | Zbl
[9] Eliseev A. G., Lomov S. A., “Theory of singular perturbations in the case of spectral singularities of the limit operator”, Mathematical collection, 131:173 (1986), 544–557 | Zbl
[10] Eliseev A. G., Ratnikova T. A., “Singularly perturbed Cauchy problem in the presence of a rational «simple» turning point”, Differential equations and control processes, 2019, no. 3, 63–73 | Zbl
[11] Eliseev A. G., “Regularized solution of a singularly perturbed Cauchy problem in the presence of an irrational «simple» turning point”, Differential Equations and Control Processes, 2020, no. 2, 15–32 | Zbl
[12] Yeliseev A., “On the Regularized Asymptotics of a Solution to the Cauchy Problem in the Presence of a Weak Turning Point of the Limit Operator”, Axioms, 2020, no. 9, 86 | DOI | MR
[13] Kirichenko P. V., “Singularly perturbed Cauchy problem for a parabolic equation in the presence of a «weak» turning point of the limit operator”, Mathematical notes of NEFU, 2020, no. 3, 3–15
[14] Eliseev A. G., Kirichenko P. V., “Regularized asymptotics of the solution of a singularly perturbed Cauchy problem in the presence of a «weak» turning point of the limit operator”, Differential Equations and Control Processes, 2020, no. 1, 55–67 | Zbl
[15] Eliseev A. G., Kirichenko P. V., “Singularly perturbed Cauchy problem in the presence of a «weak» first-order turning point of a limit operator with multiple spectrum”, Differential Equations, 58:6 (2022), 733–746 | Zbl
[16] Eliseev A. G., “An example of solving a singularly perturbed Cauchy problem for a parabolic equation in the presence of a «strong» turning point”, Differential Equations and Control Processes, 2022, no. 3, 46–58 | Zbl
[17] Eliseev A. G., Kirichenko P. V., “Regularized asymptotic solutions of a sylucularly indignant mixed problem on a semi -shaft for an equation of the Schrodinger type in the presence of a «strong» turning point at the maximum operator”, Chebyshevskii sbornik, 24:1 (2023), 50–68 | DOI | MR | Zbl
[18] Arnold V. I., “On matrices depending on parameters”, UMN, 26:2(158) (1971), 101–114 | MR
[19] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 3, Quantum mechanics (nonrelativistic theory), FIZMATLIT, M., 2004, 800 pp.
[20] Liouville J., “Second Mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis á satisfaire á une même équation différentielle du second ordre, contenant un paramétre variable”, Journal de Mathématiques Pures et Appliquées, 1837, 16–35
[21] Elsgolts L. E., Differential equations and calculus of variations, Nauka, M., 1965, 424 pp.