Transcendence of certain $2$-adic numbers
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 237-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove here that at least one of the two 2-adic numbers which are the values at $z=1$ of the sums in $ \mathbb{\mathrm{Q}}_2 $ of the series $$ f_{0}(\lambda)=\sum_{n=0}^\infty (\lambda)_{n}\lambda^{n}, f_{1}(\lambda)=\sum_{n=0}^\infty (\lambda +1)_{n}\lambda^{n},$$ where $ \lambda $ is a certain polyadic Liouville number. The series considered converge in any field $ \mathbb{\mathrm{Q}}_p $ .We deal here with $ \mathbb{\mathrm{Q}}_2 $. The symbol $(\gamma)_{n}$ denotes Pochhammer symbol, i.e. $(\gamma)_{0}=1$ , and for $n\geq 1$ we have$ (\gamma)_{n}=\gamma(\gamma+1)...(\gamma+n-1)$. The values of these series were also calculated at polyadic Liouville number. The canonic expansion of a polyadic number $\lambda$ is of the form $$ \lambda= \sum_{n=0}^\infty a_{n} n!, a_{n}\in\mathbb{\mathrm{Z}}, 0\leq a_{n}\leq n.$$ This series converges in any field of $p-$ adic numbers $ \mathbb{\mathrm{Q}}_p $ . We call a polyadic number $\lambda$ a polyadic Liouville number, if for any $n$ and $P$ there exists a positive integer $A$ such that for all primes $p$ ,satisfying $p\leq P$ the inequality $$\left|\lambda -A \right|_{p}|A|^{-n}$$ holds. It was proved earlier that the Liouville polyadic number is transcendental in any field $\mathbb{\mathrm{Q}}_p.$ In other words,the Liouville polyadic number is globally transcendental. It allowed to prove using some equality that there exists an infinite set of $p-$adic fields $ \mathbb{\mathrm{Q}}_p $ where at least one of the numbers $f_{0}(z),f_{1}(z).$ Here we prove the transcendence of values in the field $ \mathbb{\mathrm{Q}}_2 $.
Keywords: transcendence, polyadic number, polyadic Liouville number,.
@article{CHEB_2023_24_5_a17,
     author = {V. G. Chirskii},
     title = {Transcendence of certain $2$-adic numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {237--243},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a17/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Transcendence of certain $2$-adic numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 237
EP  - 243
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a17/
LA  - ru
ID  - CHEB_2023_24_5_a17
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Transcendence of certain $2$-adic numbers
%J Čebyševskij sbornik
%D 2023
%P 237-243
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a17/
%G ru
%F CHEB_2023_24_5_a17
V. G. Chirskii. Transcendence of certain $2$-adic numbers. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 237-243. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a17/

[1] Shidlovskii A. B., Transtsendentnye chisla, «Nauka», M., 1987, 448 pp. ; A. B. Shidlovskii, Transcendental Numbers, W. de Gruyter, Berlin.-New York, 1989, 467 pp. | MR | MR | Zbl

[2] Adams W., “On the algebraic independence of certain Liouville numbers”, J. Pure and Appl. Algebra, 13 (1978), 41–47 | DOI | MR | Zbl

[3] Waldschmidt M., “Independance algebrique de nombres de Liouville”, Lect.Notes Math., 1415, 1990, 225–235 | DOI | MR | Zbl

[4] Chirskii V. G., “Arifmeticheskie svoistva ryadov eilerova tipa s poliadicheskim liuvillevym parametrom”, Doklady Akademii nauk, ser. matem.inform. prots. upravl., 494:2 (2020), 69–70

[5] Chiskii V. G., “Arithmetic properties of values at polyadic Liouvillean point of Euler-type series with polyadic Liouvillean parameter”, Chebyshevsky sbornik, 22:2 (2021), 304–312 | DOI | MR | Zbl

[6] Chiskii V. G., “Generalization of the Notion of a Global Relation”, J. Math. Sci(N.Y), 137:2 (2006), 4744–4754 | DOI | MR

[7] Chiskii V. G., “Qn series which are algebraically independent in all local fields”, Vestn. Mosc. univ. Ser. 1., Math., mech., 1994, no. 3, 93–95 | Zbl

[8] Chirskii V. G., “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., 26:3 (2019), 286–305 | DOI | MR | Zbl

[9] Chirskii V. G., “Arithmetic properties of generalized hypergeometric $F$-series”, Russ. J. Math. Phys., 27:2 (2020), 175–184 | DOI | MR | Zbl

[10] Chirskii V. G., “Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameter”, Dokl. Math., 106:2 (2022), 386–397 | DOI | MR | Zbl

[11] Yudenkova E. Yu., “Infinite linear and algebraic independence pf values of F-series at polyadic Liouvillean point”, Chebyshevsky sbornik, 22:2 (2021), 334–346 | DOI | MR | Zbl

[12] Matveev V. Yu., “Properties of elements of direct products of fields”, Chebyshevsky sbornik, 20:2 (2019), 383–390 | DOI | MR | Zbl

[13] Krupitsin E. S., “Arithmetic properties of series of certain classes”, Chebyshevsky sbornik, 20:2 (2019), 374–382 | DOI | MR

[14] Ernvall-Hytonen A.-M., Matala-aho T., Seppala I., “Euler's factorial series, Hardy integral, and continued fractions”, J.Number Theory, 244 (2023), 224–250 | DOI | MR | Zbl

[15] Chirskii V. G., “Transcendence of p-adic values of generalized hypergeometric series with transcendental polyadic parameter”, Dokl. Math., 107:2 (2023), 109–111 | DOI | DOI | MR | Zbl

[16] Chirskii V. G., “Polyadic Liouvillean numbers”, Chebyshevsky sbornik, 22:3 (2021), 245–255 | DOI | MR | Zbl