Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a16, author = {D. K. Tukhliev}, title = {Kolmogorov's type inequalities in {Bergman} space $B_2$ and some of its applications}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {228--236}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/} }
D. K. Tukhliev. Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/
[1] Shabozov, M. Sh., Tukhliev, D. K., “On the joint approximation of functions and their successive derivatives in the Bergman space”, DAN Tajikistan, 61:5 (2018), 419–426
[2] Shabozov, M. Sh., Saidusajnov, M. S., “Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy IMM UrO RAN, 25, no. 2, 2019, 258–272
[3] Bitsadze, A. V., Fundamentals of the theory of analytical functions of a complex variable, Nauka, M., 1969, 239 pp. (in Russian) | MR
[4] Smirnov, V. I., Lebedev, N. A., Constructive theory of functions of a complex variable, Nauka, M.–L., 1964, 440 pp. (in Russian) | MR
[5] Vakarchuk, S. B., “Mean Approximation of Functions on the Real Axis by Algebraic Polinomials with Chebyshev–Hermite Weight and Widths of Function Classes”, Math. Notes, 95:5 (2014), 666–684 | DOI | Zbl