Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 228-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{N}$ be the set of natural numbers, $\mathbb{Z_{+}}$ be the set of non-negative integers, $\mathbb{C}$ be the set of complex numbers, $A(U)$ be the set of analytic functions in the unit circle $U:=\left\{z\in \mathbb{C}:|z|1\right\}$, $B_2$ – be the Bergman spaces of functions $f\in A(U)$, endowed with a finite norm $$\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\displaystyle\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}.$$ For $f\in A(U)$, we denote the usual derivative of order $m\in \mathbb{N}$ by $f^{(m)}(z)$ and introduce a class of functions $$B^{(m)}_2:=\left\{f\in B_2:\|f^{(m)}\|_2\infty\right\}.$$ Let $E_{n-1}(f)_2$ be the magnitude of the best approximation of function $f\in B_2$ by complex algebraic polynomials of degree $\leq n-1.$ In this paper, a number of exact inequalities are found between the value of the best approximation of intermediate derivatives $E_{n-\nu-1}(f^{(\nu)})_2$ $(\nu=1,2,\cdots,m-1; m\geq2)$ and the best approximation $E_{n-m-1}(f^{(m)})_2$ of the highest derivative $f^{(m)}.$ Let $W^{(m)}_2:=W^{(m)}_2(U) \hspace{1mm} (m\in \mathbb{N})$ be a class of functions $f\in B^{(m)}_2$ for which $\|f^{(m)}\|_2\leq 1$. In this paper is proved that for any $n,m\in \mathbb{N}, \nu\in\mathbb{Z_+}, n>m\geq\nu$, the equality of takes place $$E_{n-\nu-1}(W^{(m)}_2)_2=\sup\{E_{n-\nu-1}(f^{(\nu)})_2: f\in W^{(m)}_2\}= \frac{\alpha_{n,\nu}}{\alpha_{n,m}}\cdot\sqrt{\frac{n-m+1}{n-\nu+1}},$$ and also, in the space $B_2$ for functions $f\in B^{(m)}_2$ for all $1\leq\nu\leq m-1, m\geq2$, an exact inequality of the Kolmogorov type $$ E_{n-\nu-1}(f^{(\nu)})_2\leq A_{m,\nu}(n)(E_{n-1}(f)_2)^{1-\nu/m}\cdot(E_{n-m-1}(f^{(m)})_2)^{\nu/m},$$ is found, where the constant $A_{m,\nu}(n)$ is explicitly written out. Some applications of the resulting inequality are given.
Keywords: Bergman space, exact inequalities, mean-square approximations, best polynomial approximation, extremal problems, Kolmogorov type inequality.
@article{CHEB_2023_24_5_a16,
     author = {D. K. Tukhliev},
     title = {Kolmogorov's type inequalities in {Bergman} space $B_2$ and some of its applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/}
}
TY  - JOUR
AU  - D. K. Tukhliev
TI  - Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 228
EP  - 236
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/
LA  - ru
ID  - CHEB_2023_24_5_a16
ER  - 
%0 Journal Article
%A D. K. Tukhliev
%T Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
%J Čebyševskij sbornik
%D 2023
%P 228-236
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/
%G ru
%F CHEB_2023_24_5_a16
D. K. Tukhliev. Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a16/

[1] Shabozov, M. Sh., Tukhliev, D. K., “On the joint approximation of functions and their successive derivatives in the Bergman space”, DAN Tajikistan, 61:5 (2018), 419–426

[2] Shabozov, M. Sh., Saidusajnov, M. S., “Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy IMM UrO RAN, 25, no. 2, 2019, 258–272

[3] Bitsadze, A. V., Fundamentals of the theory of analytical functions of a complex variable, Nauka, M., 1969, 239 pp. (in Russian) | MR

[4] Smirnov, V. I., Lebedev, N. A., Constructive theory of functions of a complex variable, Nauka, M.–L., 1964, 440 pp. (in Russian) | MR

[5] Vakarchuk, S. B., “Mean Approximation of Functions on the Real Axis by Algebraic Polinomials with Chebyshev–Hermite Weight and Widths of Function Classes”, Math. Notes, 95:5 (2014), 666–684 | DOI | Zbl