Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a12, author = {V. I. Subbotin}, title = {On the enumeration of convex $RR$-polyhedra}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {194--207}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a12/} }
V. I. Subbotin. On the enumeration of convex $RR$-polyhedra. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 194-207. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a12/
[1] Grunbaum B., “Regular polyhedra - old and new”, Aequationes mathematicae, 16:1-2 (1977), 1–20 | DOI | MR | Zbl
[2] Coxeter H. S., Regular polytopes, London-NY, 1963 | MR | Zbl
[3] Deza M, Grishukhin V. P., Shtogrin M. I., Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices, MCNMO, M., 2008
[4] Emelichev V. A., Kovalev M. M., Kravzov M. K., Polyhedra. Graph. Optimization, Nauka, M., 1981 | MR
[5] Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[6] Makarov P. V., “On the derivation of four-dimensional semi-regular polytopes”, Voprosy Diskret. Geom. Mat. Issled. Akad. Nauk. Mold., 103 (1988), 139–150 | MR | Zbl
[7] Makarov V. S., “Regular polytopes and polyhedra with regular faces of the three-dimensional Lobachevsky space”, Proc. Int. Seminar “Discrete Mathematics and Its Applications”, M., 2010, 58–66
[8] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra”, Geometriae Dedicata, 26:1 (1988), 111–124 | DOI | MR | Zbl
[9] McMullen P., Geometric Regular Polytopes, Cambridge University Press, 2020 | MR | Zbl
[10] Blind G., Blind R., “The semiregular polytopes”, Commentarii Mathematici Helvetici, 66:1 (1991), 150–154 | DOI | MR | Zbl
[11] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl
[12] Zalgaller V. A., “Convex polyhedra with regular faces”, Zapiski nauchnych seminarov LOMI, 2, 1967, 1–220 | MR
[13] Milka A. D., “Almost regular polyhedra”, Trudy In-ta mat. SO AN SSSR, 9, 1987, 136–141 | MR | Zbl
[14] Timofeenko A. V., “Junction of noncomposite polytops”, St. Petersburg Math. J., 21:3 (2010), 483–512 | DOI | MR | Zbl
[15] Subbotin V. I., “On a class of strongly symmetric polytopes”, Chebyshevskii sbornik, 17:4 (2016), 132–140 | DOI | Zbl
[16] Subbotin V. I., “On two classes of polyhedra with rhombic vertices”, Zapiski nauchnych seminarov POMI, 476, 2018, 153–164
[17] Subbotin V. I., “On one class of polyhedra with symmetric vertex stars”, Itogi nauki i tekhniki. Sovremennaya matematika i yeye prilozheniya. Tematicheskiye obzory, 169, 2019, 86–95
[18] Subbotin V. I., “On the completeness of the list of convex $ RR $-polytopes”, Chebyshevskii sbornik, 21:1 (2020), 297–309 | DOI | MR
[19] Subbotin V. I., “On the existence of RR-polyhedra related to the icosahedron”, Chebyshevskii sbornik, 22:4 (2021), 253–264 | DOI | MR | Zbl
[20] Subbotin V. I., “On the existence and completeness of the enumeration of three-dimensional RR-polytopes”, Itogi nauki i tekhniki. Sovremennaya matematika i yeye prilozheniya. Tematicheskiye obzory, 216, 2022, 106–115 | DOI
[21] Subbotin V. I., “On the composite RR-polyhedra of the second type”, Siberian Mathematical Journal, 64:2 (2023), 500–506 | DOI | MR | Zbl
[22] Subbotin V. I., “On non-composite RR-polytopes of the second type”, Itogi nauki i tekhniki. Sovremennaya matematika i yeye prilozheniya. Tematicheskiye obzory, 221, 2023, 104–114 | DOI