Some generalizations of the Faa Di Bruno formula
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 180-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The focus of the article is the classical Faa Di Bruno formula for computing higher-order derivatives of a complex function $F(u(x))$. Here is a version of the proof of this formula. Then we prove a generalization of the Faa Di Bruno formula to the case of a complex function with an inner function $u(x,y)$ depending on two independent variables. The paper presents a formula for the $n$-th derivative of a complex function, when the argument of the outer function is a vector with an arbitrary number of components (functions of one variable). The article also considers examples of finding higher-order derivatives, illustrating both the classical Faa Di Bruno formula and its generalizations.
Keywords: Faa Di Bruno's formula, $n$-th derivative of complex functions of several variables, generalizations of Faa Di Bruno's formula for these functions, Newton's binomial and polynomial formulas.
@article{CHEB_2023_24_5_a11,
     author = {P. N. Sorokin},
     title = {Some generalizations of the {Faa} {Di} {Bruno} formula},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {180--193},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/}
}
TY  - JOUR
AU  - P. N. Sorokin
TI  - Some generalizations of the Faa Di Bruno formula
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 180
EP  - 193
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/
LA  - ru
ID  - CHEB_2023_24_5_a11
ER  - 
%0 Journal Article
%A P. N. Sorokin
%T Some generalizations of the Faa Di Bruno formula
%J Čebyševskij sbornik
%D 2023
%P 180-193
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/
%G ru
%F CHEB_2023_24_5_a11
P. N. Sorokin. Some generalizations of the Faa Di Bruno formula. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 180-193. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/

[1] Faá di Bruno F., “Sullo sviluppo delle funzione”, Annali di Scuenze Matematiche e Fisiche, 6 (1855), 479–480

[2] Faá di Bruno F., “Note sur un nouvelle formulae de calcul differentiel”, Quart. J. Math., 1 (1857), 359–360

[3] Mishkov R. L., “Generalization of the formula of Faá di Bruno for a composite function with a vector argument”, Internat. J. Math. Math. Sci., 24:7 (2000), 481–491 | DOI | MR | Zbl

[4] Roman S., “The formula of Faá di Bruno”, Amer. Math. Monthly, 87:10 (1980), 805–809 | DOI | MR | Zbl

[5] Dvoryaninov S. V., Silvanovich M. I., “On the Faá di Bruno formula for derivatives of a complex function”, Matematicheskoye obrazovaniye, 2009, no. 1(49), 22–26

[6] Arhipov G. I., Chubarikov V. N., Sadovnichiy V. A., Lectures on mathematical analysis, Drofa, M., 2003, 640 pp.

[7] Bell E. T., “Partition polynomials”, Ann. Math., 29 (1927), 38–46 | DOI | MR

[8] Comtet L., Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974 | MR | Zbl

[9] Johnson W. P., “The curious history of Faá di Bruno's formula”, Amer. Math. Monthly, 109 (2002), 217–234 | MR | Zbl

[10] Chubarikov V. N., “A generalized Binomial theorem and a summation formulas”, Chebyshevskii Sbornik, 21:4 (2020), 270–301 | DOI | MR | Zbl

[11] Constantine G. M., Savits T. H., “A multivariate Faá di Bruno formula with applications”, Trans. Amer. Math. Soc., 348:2 (1996), 503–520 | DOI | MR | Zbl

[12] Shabat A. B., Efendiev M. Kh., “Applications of the Faá di Bruno formula”, Ufimskiy matematicheskiy zhurnal, 9:3 (2017), 132–137 | MR | Zbl

[13] Demidovich B. P., Sbornik zadach i uprazhneniy po matematicheskomu analizu, Uchebnoye posobiye, 14 izdaniye, ispr., Izd-vo Moskovskogo universiteta, M., 1998, 624 pp.

[14] Frabetti A., Manchon D., Five interpretation of Faá di Bruno's formula, 2014, arXiv: 1402.5551 | MR

[15] Craik A. D. D., “Prehistory of Faá di Bruno's formula”, Amer. Math. Monthly, 112:2 (2005), 119–130 | MR | Zbl

[16] Arbogast L. F. A., Du Calcul des Dérivations, Levrault, Strasbourg, 1800