Some generalizations of the Faa Di Bruno formula
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 180-193
Voir la notice de l'article provenant de la source Math-Net.Ru
The focus of the article is the classical Faa Di Bruno formula for computing higher-order derivatives of a complex function $F(u(x))$. Here is a version of the proof of this formula. Then we prove a generalization of the Faa Di Bruno formula to the case of a complex function with an inner function $u(x,y)$ depending on two independent variables. The paper presents a formula for the $n$-th derivative of a complex function, when the argument of the outer function is a vector with an arbitrary number of components (functions of one variable). The article also considers examples of finding higher-order derivatives, illustrating both the classical Faa Di Bruno formula and its generalizations.
Keywords:
Faa Di Bruno's formula, $n$-th derivative of complex functions of several variables, generalizations of Faa Di Bruno's formula for these functions, Newton's binomial and polynomial formulas.
@article{CHEB_2023_24_5_a11,
author = {P. N. Sorokin},
title = {Some generalizations of the {Faa} {Di} {Bruno} formula},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {180--193},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/}
}
P. N. Sorokin. Some generalizations of the Faa Di Bruno formula. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 180-193. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a11/