About cotangent
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 167-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe a reasoning method which allows to get relatively simple estimates of cotangent values for angles in the half-interval $(0, \pi/2 ]$. The method is based on the ability of the cotangent to refine some of its estimates that were derived from other considerations. As an illustration of the method we give cotangent estimates for two subclasses of rational functions.
Keywords: cotangent, estimations, minorants, majorants.
@article{CHEB_2023_24_5_a10,
     author = {S. Yu. Soloviev},
     title = {About cotangent},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {167--179},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/}
}
TY  - JOUR
AU  - S. Yu. Soloviev
TI  - About cotangent
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 167
EP  - 179
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/
LA  - ru
ID  - CHEB_2023_24_5_a10
ER  - 
%0 Journal Article
%A S. Yu. Soloviev
%T About cotangent
%J Čebyševskij sbornik
%D 2023
%P 167-179
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/
%G ru
%F CHEB_2023_24_5_a10
S. Yu. Soloviev. About cotangent. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 167-179. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/

[1] Gelfand, I. M., Lvovsky, S. M., Toom, A. L., Trigonometry, MCCME, M., 2008, 199 pp. (in Russian)

[2] Gelfand I. M., Saul M., Trigonometry, Birkhäuser Boston, Boston, MA, 2001, 229 pp. | Zbl

[3] Gursky, I. P., Functions and graphs build, Prosveschenie, M., 1968, 215 pp. (in Russian)

[4] Kaazik, Y. A., Mathematical dictionary, Fizmatlit, M., 2007, 336 pp. (in Russian) | MR

[5] Vinogradov, I. M. (ed.), Encyclopedia of mathematics, Sov. Entsiklopediya, M., 1982, 592 pp. (in Russian) | MR

[6] Shary, S. P., Course of computational methods, Novosibirsk State University, Novosibirsk, 2022, 668 pp. (in Russian)

[7] Bradis, V. M., Theory and practice of computing, UchPegGiz, M., 1935, 280 pp. (in Russian)

[8] Markushevich, A. I., Recursion sequences, Mir Publishers, M., 1975, 48 pp. (in Russian)

[9] Goloveshkin, V. A., Ulyanov, M. V., Recursion theory for programmers, Fizmatlit, M., 2006, 296 pp. (in Russian)

[10] Sominsky, I. S., The Method of Mathematical Induction, Mir Publishers, M., 1975, 63 pp. (in Russian)

[11] Gunderson D. S., Handbook of mathematical induction: Theory and applications, CRC Press, Boca Ratton, FL, 2011, 893 pp. | MR | Zbl

[12] Ilyin, V. A., Poznyak, E. G., Basics of Mathematical Analysis, v. 1, Fizmatlit, M., 2005, 648 pp. (in Russian) | MR

[13] Tikhonov, A. N., Vasil'eva, A. B., Sveshnikov, A. G., Differential Equations, Springer-Verlag, Berlin, 1985, 256 pp. | MR | Zbl

[14] Trenogin, V. A., The Functional Analysis, Fizmatlit, M., 2002, 488 pp. (in Russian) | MR

[15] Kudriavtsev, L. D., Course of Mathematical Analysis, v. 2, Iurait Publ., M., 2022, 720 pp. (in Russian)