About cotangent
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 167-179

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe a reasoning method which allows to get relatively simple estimates of cotangent values for angles in the half-interval $(0, \pi/2 ]$. The method is based on the ability of the cotangent to refine some of its estimates that were derived from other considerations. As an illustration of the method we give cotangent estimates for two subclasses of rational functions.
Keywords: cotangent, estimations, minorants, majorants.
@article{CHEB_2023_24_5_a10,
     author = {S. Yu. Soloviev},
     title = {About cotangent},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {167--179},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/}
}
TY  - JOUR
AU  - S. Yu. Soloviev
TI  - About cotangent
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 167
EP  - 179
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/
LA  - ru
ID  - CHEB_2023_24_5_a10
ER  - 
%0 Journal Article
%A S. Yu. Soloviev
%T About cotangent
%J Čebyševskij sbornik
%D 2023
%P 167-179
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/
%G ru
%F CHEB_2023_24_5_a10
S. Yu. Soloviev. About cotangent. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 167-179. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a10/