On cardinality of character sums with Beatty sequences associated with composite modules
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 5-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non homogeneous Beatty sequences play important rules in Wythoff games and invariant games such as on how to beat your Wytoff games opponent on three fronts and give properties into a decision of the procedure relying only on a few algebraic tests. This paper discusses on the cardinality of character sums and their estimation with respect to non homogeneous Beatty sequences $\beta_\alpha = \lfloor \alpha n+ \beta :n = 1, 2, 3 ...\rfloor$ where $ \beta $ in real numbers and $\alpha $ greater than zero is irrational. In order to estimate the cardinality, the discrepancy is used to measure the number of uniform distribution for Beatty sequences. Pigeonhole principle is discussed on the estimation of the fractional part of Beatty sequences involve. Meanwhile, Cauchy inequalities is applied to expand the double character sums. Then, the cardinality of double character sums is obtained by applying the extension properties of additive and multiplicative character sums. The result obtained is depend on the existing of identity of additive and multiplicative character sums and the uniformly distribution modulo $1$. The result of the estimation in this study over composite modules is more general compared to previous studies, which only cover prime modules.
Keywords: cardinality, estimation, finite groups, sum of characters, additive characters, multiplicative character, Beatty sequences, number theory, pigeonhole principle, rational number, irrational numbers.
@article{CHEB_2023_24_5_a0,
     author = {I. A. Allakov and F. Deraman and S. H. Sapar and Sh. Ismail},
     title = {On cardinality of character sums with {Beatty} sequences associated with composite modules},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/}
}
TY  - JOUR
AU  - I. A. Allakov
AU  - F. Deraman
AU  - S. H. Sapar
AU  - Sh. Ismail
TI  - On cardinality of character sums with Beatty sequences associated with composite modules
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 5
EP  - 15
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/
LA  - en
ID  - CHEB_2023_24_5_a0
ER  - 
%0 Journal Article
%A I. A. Allakov
%A F. Deraman
%A S. H. Sapar
%A Sh. Ismail
%T On cardinality of character sums with Beatty sequences associated with composite modules
%J Čebyševskij sbornik
%D 2023
%P 5-15
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/
%G en
%F CHEB_2023_24_5_a0
I. A. Allakov; F. Deraman; S. H. Sapar; Sh. Ismail. On cardinality of character sums with Beatty sequences associated with composite modules. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 5-15. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/

[1] Chua L., Park S., Smith G.D., “Bounded Gaps Between Primes in Special Sequences”, Proceedings of The American Mathematical Society, 143, Springer, Berlin–Heidelberg, 2015, 4597–4611 | DOI | MR

[2] Guloglu A. M., Nevans C. W., “Sums of multiplicative functions over a Beatty sequence”, Bull. Austral. Math. Soc., 78 (2008), 327–334 | DOI | MR | Zbl

[3] Simpson R. J., “Disjoint covering systems rational Beatty sequences”, Discrete Mathematics, 92 (1991), 361–369 | DOI | MR | Zbl

[4] Banks W. D., Shparlinski I. E., “Non-residues and primitive roots in Beatty sequences”, Bull. Austral. Math. Soc., 73 (2006), 433–443 | DOI | MR | Zbl

[5] Banks W. D., Shparlinski I. E., “Short character sums with beatty sequences”, Math. Res. Lett., 13 (2006), 1–100 | DOI | MR

[6] Cassaigne J., DuchÃane E., Rigo M., “Nonhomogeneous beatty sequences leading to invariant games”, SIAM Journal on Discrete Mathematics, 30 (2016), 1798–1829 | DOI | MR | Zbl

[7] Kimberling C., “Beatty sequences and trigonometric functions”, INTEGERS, 16 (2016) https://www.emis.de/journals/INTEGERS/papers/q15/q15.pdf | MR | Zbl

[8] Deraman F. , Sapar S. H., Johari M. A. M., Atan K. A. M., Rasedee A. F. N., “Extended Bounds of Beatty Sequence Associated with Primes”, International Journal of Engineering and Advanced Technology, 2019, 115–118 | DOI

[9] Polya G., “Uher die Verteilung der quadratischen Reste und Nichtreste”, Nachrichten Knigl. Ges. Wiss. Gttingen, 1918, 21–29

[10] Vinogradov I. M., “Uber die Verteilung der quadratischen Reste und Nichtrete”, J. Soc. Phys. Math. Univ., 2 (1919), 1–14

[11] Friedlander J., Iwaniec H., “Estimates for character sums”, Proceedings of The American Mathematical Society, 119:2 (1993), 365–372 | DOI | MR | Zbl

[12] Cassaigne J., Duchlne E., Rigo M., “Nonhomogeneous Beatty sequencesleading to invariant games”, SIAM Journal on Descrete Mathematics, 30:3 (2016), 1798–1829 | DOI | MR | Zbl

[13] Fraenkel A. S., “How to beat your Wythoff games opponents on three fronts”, Amer. Math. Monthly, 89 (1982), 353–361 | DOI | MR | Zbl

[14] Cassaigne J., Duchene E., Rigo M., Invariant games and non-homogeneous Beatty sequences, 2013, arXiv: 1312.2233

[15] Lidl R., Niederreiter H., Uniform distribution of sequences, John Wiley Sons, New York, 1974 | MR

[16] Hlawka E., Taschner R., Schoißengeier J., Geometric and Analytic Number Theory, Springer-Verlag, 1991 | MR | Zbl

[17] Lidl R. and Niederreiter H., Introduction To Finite Fields and Their Applications, Cambridge University Press, 1983 | MR