Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a0, author = {I. A. Allakov and F. Deraman and S. H. Sapar and Sh. Ismail}, title = {On cardinality of character sums with {Beatty} sequences associated with composite modules}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {5--15}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/} }
TY - JOUR AU - I. A. Allakov AU - F. Deraman AU - S. H. Sapar AU - Sh. Ismail TI - On cardinality of character sums with Beatty sequences associated with composite modules JO - Čebyševskij sbornik PY - 2023 SP - 5 EP - 15 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/ LA - en ID - CHEB_2023_24_5_a0 ER -
%0 Journal Article %A I. A. Allakov %A F. Deraman %A S. H. Sapar %A Sh. Ismail %T On cardinality of character sums with Beatty sequences associated with composite modules %J Čebyševskij sbornik %D 2023 %P 5-15 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/ %G en %F CHEB_2023_24_5_a0
I. A. Allakov; F. Deraman; S. H. Sapar; Sh. Ismail. On cardinality of character sums with Beatty sequences associated with composite modules. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 5-15. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a0/
[1] Chua L., Park S., Smith G.D., “Bounded Gaps Between Primes in Special Sequences”, Proceedings of The American Mathematical Society, 143, Springer, Berlin–Heidelberg, 2015, 4597–4611 | DOI | MR
[2] Guloglu A. M., Nevans C. W., “Sums of multiplicative functions over a Beatty sequence”, Bull. Austral. Math. Soc., 78 (2008), 327–334 | DOI | MR | Zbl
[3] Simpson R. J., “Disjoint covering systems rational Beatty sequences”, Discrete Mathematics, 92 (1991), 361–369 | DOI | MR | Zbl
[4] Banks W. D., Shparlinski I. E., “Non-residues and primitive roots in Beatty sequences”, Bull. Austral. Math. Soc., 73 (2006), 433–443 | DOI | MR | Zbl
[5] Banks W. D., Shparlinski I. E., “Short character sums with beatty sequences”, Math. Res. Lett., 13 (2006), 1–100 | DOI | MR
[6] Cassaigne J., DuchÃane E., Rigo M., “Nonhomogeneous beatty sequences leading to invariant games”, SIAM Journal on Discrete Mathematics, 30 (2016), 1798–1829 | DOI | MR | Zbl
[7] Kimberling C., “Beatty sequences and trigonometric functions”, INTEGERS, 16 (2016) https://www.emis.de/journals/INTEGERS/papers/q15/q15.pdf | MR | Zbl
[8] Deraman F. , Sapar S. H., Johari M. A. M., Atan K. A. M., Rasedee A. F. N., “Extended Bounds of Beatty Sequence Associated with Primes”, International Journal of Engineering and Advanced Technology, 2019, 115–118 | DOI
[9] Polya G., “Uher die Verteilung der quadratischen Reste und Nichtreste”, Nachrichten Knigl. Ges. Wiss. Gttingen, 1918, 21–29
[10] Vinogradov I. M., “Uber die Verteilung der quadratischen Reste und Nichtrete”, J. Soc. Phys. Math. Univ., 2 (1919), 1–14
[11] Friedlander J., Iwaniec H., “Estimates for character sums”, Proceedings of The American Mathematical Society, 119:2 (1993), 365–372 | DOI | MR | Zbl
[12] Cassaigne J., Duchlne E., Rigo M., “Nonhomogeneous Beatty sequencesleading to invariant games”, SIAM Journal on Descrete Mathematics, 30:3 (2016), 1798–1829 | DOI | MR | Zbl
[13] Fraenkel A. S., “How to beat your Wythoff games opponents on three fronts”, Amer. Math. Monthly, 89 (1982), 353–361 | DOI | MR | Zbl
[14] Cassaigne J., Duchene E., Rigo M., Invariant games and non-homogeneous Beatty sequences, 2013, arXiv: 1312.2233
[15] Lidl R., Niederreiter H., Uniform distribution of sequences, John Wiley Sons, New York, 1974 | MR
[16] Hlawka E., Taschner R., Schoißengeier J., Geometric and Analytic Number Theory, Springer-Verlag, 1991 | MR | Zbl
[17] Lidl R. and Niederreiter H., Introduction To Finite Fields and Their Applications, Cambridge University Press, 1983 | MR