Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a9, author = {M. A. Korolev}, title = {A distribution related to {Farey} series}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {137--190}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/} }
M. A. Korolev. A distribution related to Farey series. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 137-190. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/
[1] Cobeli C., Zaharescu A., “The Haros-Farey sequence at two hundred years. A survey”, Acta Univ. Apulensis Math. Inform., 5 (2003), 1–38 | MR | Zbl
[2] Haynes A., “A note on Farey fractions with odd denominators”, J. Number Theory, 98:2 (2003), 89–104 | DOI | MR | Zbl
[3] Boca F.P., Cobeli C., Zaharescu A., “On the distribution of the Farey sequence with odd denominators”, Michigan Math. J., 51 (2003), 557–573 | DOI | MR | Zbl
[4] Cobeli C., Zaharescu A., The distribution of rationals in residue classes, 14.11.2005, arXiv: math/0511356v1 [math.NT]
[5] Cobeli C., Zaharescu A., “On the Farey Fractions with Denominators in Arithmetic Progression”, J. Integer Sequences, 9 (2006), 06.3.4 | MR | Zbl
[6] Alkan E., Ledoan A.H., Vâjâitu M., Zaharescu A., “Discrepancy of Fractions with Divisibility Constraints”, Monatsh. Math., 149 (2006), 179–192 | DOI | MR | Zbl
[7] Haynes A., The distribution of special subsets of the Farey sequence, 13.07.2009, arXiv: math/0907.2171v1 [math.NT]
[8] Cobeli C., Vâjâitu M., Zaharescu A., “The distribution of rationals in residue classes”, Math. Reports, 14:1(64) (2012), 1–19 | MR | Zbl
[9] Badziahin D.A., Haynes A.K., “A note on Farey fractions with denominators in arithmetic progressions”, Acta Arith., 146:3 (2011), 205–215 | DOI | MR
[10] Boca F.P., Heersink B., Spiegelhalter P., Gap distribution of Farey fractions under some divisibility constraints, 2013, arXiv: 1301.0277v2 [math.NT] | MR
[11] Bittua, Chaubeya S., Goela S., On the distribution of index of Farey Sequences, 2022, arXiv: 2203.16215v1 [math.NT] | MR
[12] Boca F.P., Siskaki M., A note on the pair correlation of Farey fractions, 19.09.2022, arXiv: 2109.12744v2 [math.NT] | MR
[13] Boca F.P., Cobeli C., Zaharescu A., “A conjecture of R. R. Hall on Farey points”, J. reine angew. Math., 535 (2001), 207–236 | MR | Zbl
[14] Baker A., Transcendental number theory, Cambr. Univ. Press, 1975 | MR | Zbl
[15] Lindeman F., “Ueber die Zahl $\pi$”, Math. Ann., 20 (1882), 213–225 | DOI | MR
[16] Ustinov A.V., “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl
[17] Graham R.L., Knuth D.E., Patashnik O, Concrete Mathematics, 2nd ed., Addison-Wesley, Massachusetts, 1994 | MR | MR | Zbl
[18] Smirnov E.Yu., Frieze patterns and continued fractions, MCCME, M., 2022 (in Russian)
[19] Boca F.P., Gologan R., Zaharescu A., “On the index of Farey sequences”, Quart. J. Math., 53:4 (2002), 377–391 | DOI | MR | Zbl
[20] Postnikov A.G., Introduction to analytic number theory, Transl. Math. Monographs, 68, AMS, Providence, Rhode Island, 1988 | DOI | MR | Zbl
[21] Gradstein I.S., Ryjik I.M., Tables of Integrals, Sums and Products, Academic Press, New York, 1965 | MR | MR