A distribution related to Farey series
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 137-190

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some arithmetical properties of Farey fractions by the method introduced by F. Boca, C. Cobeli and A. Zaharescu (2001). Suppose that $D\geqslant 2$ is a fixed integer and denote by $\Phi_{Q}$ the classical Farey series of order $Q$. Now let us colour to the red the fractions in $\Phi_{Q}$ with denominators divisible by $D$. Consider the gaps in $\Phi_{Q}$ with coloured endpoints, that do not contain the fractions $a/q$ with $D|q$ inside. The question is to find the limit proportions $\nu(r;D)$ (as $Q\to +\infty$) of such gaps with precisely $r$ fractions inside in the whole set of the gaps under considering ($r = 1,2,3,\ldots$). In fact, the expression for this proportion can be derived from the general result obtained by C. Cobeli, M. Vâjâitu and A. Zaharescu (2014). However, such formula expresses $\nu(r;D)$ in the terms of areas of some polygons related to some geometrical transform of «Farey triangle», that is, the subdomain of unit square defined by $x+y>1$, $0$. In the present paper, we obtain the precise formulas for $\nu(r;D)$ (in terms of the parameter $r$, $r=1,2,3,\ldots$) for the cases $D = 2, 3$.
Keywords: Farey series, Farey fractions, Farey triangle, arithmetical properties, distribution, $BCZ$-transform.
@article{CHEB_2023_24_4_a9,
     author = {M. A. Korolev},
     title = {A distribution related to {Farey} series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {137--190},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - A distribution related to Farey series
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 137
EP  - 190
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/
LA  - ru
ID  - CHEB_2023_24_4_a9
ER  - 
%0 Journal Article
%A M. A. Korolev
%T A distribution related to Farey series
%J Čebyševskij sbornik
%D 2023
%P 137-190
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/
%G ru
%F CHEB_2023_24_4_a9
M. A. Korolev. A distribution related to Farey series. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 137-190. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a9/