Volterra integro-differential equation of arbitrary order with power nonlinearity
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 85-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the cone of the space of continuous functions, the method of weight metrics (analogous to Bielecki's method) is used to prove a global theorem on the existence, uniqueness, and method of finding a nontrivial solution to the initial problem for a homogeneous $n$-order integro-differential equation with a difference kernel and power nonlinearity. It is shown that this solution can be found by the method of successive approximations of the Picard type and an estimate is given for the rate of their convergence to the solution in terms of the weight metric. The study is based on the reduction of the initial problem to the equivalent nonlinear Volterra integral equation. Exact lower and upper a priori estimates for the solution are obtained, on the basis of which a complete weighted metric space is constructed that is invariant with respect to the nonlinear operator generated by this Volterra integral equation. In contrast to the linear case, it has been established that, in addition to the trivial solution, the non-linear homogeneous Volterra integral equation can also have a non-trivial solution. An analysis of the results obtained shows that with an increase in the order of an integro-differential equation with a power nonlinearity, the exponent decreases. Examples are given to illustrate the results obtained.
Keywords: Volterra integro-differential equation, power nonlinearity, a priori estimates.
@article{CHEB_2023_24_4_a7,
     author = {S. N. Askhabov},
     title = {Volterra integro-differential equation of arbitrary order with power nonlinearity},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {85--103},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Volterra integro-differential equation of arbitrary order with power nonlinearity
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 85
EP  - 103
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/
LA  - ru
ID  - CHEB_2023_24_4_a7
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Volterra integro-differential equation of arbitrary order with power nonlinearity
%J Čebyševskij sbornik
%D 2023
%P 85-103
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/
%G ru
%F CHEB_2023_24_4_a7
S. N. Askhabov. Volterra integro-differential equation of arbitrary order with power nonlinearity. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 85-103. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/

[1] Okrasiński W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR

[2] Askhabov S.N., Betilgiriev M.A., “Nonlinear convolution type equations”, Seminar. Anal. Operator equat. and numer. anal. (1989/90), Karl-Weierstrass-Institut für Mathematik, Berlin, 1990, 1–30 | MR

[3] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integral equations of convolution type with power nonlinearity and systems of such equations”, Dokl. Math., 41:2 (1990), 323–327 | MR | MR | Zbl

[4] Askhabov S. N., Nonlinear equations of convolution type, Fizmatlit, M., 2009, 304 pp. (russian) | MR

[5] Brunner H., Volterra integral equations: an introduction to the theory and applications, Cambridge University Press, Cambridge, 2017 | MR

[6] Askhabov S. N., “Volterra integral equation with power nonlinearity”, Chebyshevskii Sbornik, 23:5 (2022), 6–19 | DOI | MR | Zbl

[7] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | MR | Zbl

[8] Schneider W. R., “The general solution of a nonlinear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl

[9] Bielecki A., “Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentieless ordinaries”, Bull. Acad. Polon. Sci. Ser. Math. Phys. Astr., 4 (1956), 261–264 | MR | Zbl

[10] Bielecki A., “Une remarque sur lapplication de la methode de Banach-Cacciopoli-Tikhonov dans la theorie de lequation $s=f(x,y,z,p,q)$”, Bull. Acad. Polon. Sci. Ser. Math. Phys. Astr., 4 (1956), 265–268 | MR | Zbl

[11] Corduneanu C., “Bielecki's method in the theory of integral equations”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 38:2 (1984), 23–40 | MR | Zbl

[12] Rolewicz S., Functional analysis and control theory. Linear systems, Mathematics and its applications. East European series, 1987 | MR | Zbl

[13] Kwapisz M., “Bielecki's method. Existence and uniqueness Results for Volterra integral equations in $L^p$ space”, J. Math. Anal. Appl., 154 (1991), 403–416 | DOI | MR | Zbl

[14] Edwards R. E., Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1995 | MR

[15] Fikhtengolts G. M., Course of differential and integral calculus, v. II, Nauka, M., 1970, 800 pp. (russian)

[16] Askhabov S. N., “Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part”, Differ. Equat., 56:6 (2020), 775–784 | DOI | DOI | MR | Zbl

[17] Askhabov S. N., “On an integro-differential second order equation with difference kernels and power nonlinearity”, Bulletin of the Karaganda University, 2022, no. 2(106), 38–48 | DOI | MR

[18] Askhabov S. N., “Nonlinear integro-differential equation of the third order type of convolution”, Modern methods of the theory of boundary value problems, Pontryagin readings XXXIV, Voronezh Spring Mathematical School, mater. Intern. Conf. (May 3-9, 2023), Ed. House of VSU, Voronezh, 2023, 54–55 (russian)