Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a7, author = {S. N. Askhabov}, title = {Volterra integro-differential equation of arbitrary order with power nonlinearity}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {85--103}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/} }
S. N. Askhabov. Volterra integro-differential equation of arbitrary order with power nonlinearity. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 85-103. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a7/
[1] Okrasiński W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR
[2] Askhabov S.N., Betilgiriev M.A., “Nonlinear convolution type equations”, Seminar. Anal. Operator equat. and numer. anal. (1989/90), Karl-Weierstrass-Institut für Mathematik, Berlin, 1990, 1–30 | MR
[3] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integral equations of convolution type with power nonlinearity and systems of such equations”, Dokl. Math., 41:2 (1990), 323–327 | MR | MR | Zbl
[4] Askhabov S. N., Nonlinear equations of convolution type, Fizmatlit, M., 2009, 304 pp. (russian) | MR
[5] Brunner H., Volterra integral equations: an introduction to the theory and applications, Cambridge University Press, Cambridge, 2017 | MR
[6] Askhabov S. N., “Volterra integral equation with power nonlinearity”, Chebyshevskii Sbornik, 23:5 (2022), 6–19 | DOI | MR | Zbl
[7] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | MR | Zbl
[8] Schneider W. R., “The general solution of a nonlinear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl
[9] Bielecki A., “Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentieless ordinaries”, Bull. Acad. Polon. Sci. Ser. Math. Phys. Astr., 4 (1956), 261–264 | MR | Zbl
[10] Bielecki A., “Une remarque sur lapplication de la methode de Banach-Cacciopoli-Tikhonov dans la theorie de lequation $s=f(x,y,z,p,q)$”, Bull. Acad. Polon. Sci. Ser. Math. Phys. Astr., 4 (1956), 265–268 | MR | Zbl
[11] Corduneanu C., “Bielecki's method in the theory of integral equations”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 38:2 (1984), 23–40 | MR | Zbl
[12] Rolewicz S., Functional analysis and control theory. Linear systems, Mathematics and its applications. East European series, 1987 | MR | Zbl
[13] Kwapisz M., “Bielecki's method. Existence and uniqueness Results for Volterra integral equations in $L^p$ space”, J. Math. Anal. Appl., 154 (1991), 403–416 | DOI | MR | Zbl
[14] Edwards R. E., Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1995 | MR
[15] Fikhtengolts G. M., Course of differential and integral calculus, v. II, Nauka, M., 1970, 800 pp. (russian)
[16] Askhabov S. N., “Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part”, Differ. Equat., 56:6 (2020), 775–784 | DOI | DOI | MR | Zbl
[17] Askhabov S. N., “On an integro-differential second order equation with difference kernels and power nonlinearity”, Bulletin of the Karaganda University, 2022, no. 2(106), 38–48 | DOI | MR
[18] Askhabov S. N., “Nonlinear integro-differential equation of the third order type of convolution”, Modern methods of the theory of boundary value problems, Pontryagin readings XXXIV, Voronezh Spring Mathematical School, mater. Intern. Conf. (May 3-9, 2023), Ed. House of VSU, Voronezh, 2023, 54–55 (russian)