On the chromatic number of slices without monochromatic unit arithmetic progressions
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84

Voir la notice de l'article provenant de la source Math-Net.Ru

For $h,n\geq 1$ and $e>0$ we consider a chromatic number of the spaces $\mathbb{R}^n\times[0, e]^h$ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any $n$ there exists a two-coloring of $\mathbb{R}^n$ such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form $\mathbb{R}^n\times[0, e]^h$.
Keywords: chromatic number, Hadwiger–Nelson problem.
@article{CHEB_2023_24_4_a6,
     author = {V. O. Kirova},
     title = {On the chromatic number of slices without monochromatic unit arithmetic progressions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {78--84},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/}
}
TY  - JOUR
AU  - V. O. Kirova
TI  - On the chromatic number of slices without monochromatic unit arithmetic progressions
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 78
EP  - 84
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/
LA  - en
ID  - CHEB_2023_24_4_a6
ER  - 
%0 Journal Article
%A V. O. Kirova
%T On the chromatic number of slices without monochromatic unit arithmetic progressions
%J Čebyševskij sbornik
%D 2023
%P 78-84
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/
%G en
%F CHEB_2023_24_4_a6
V. O. Kirova. On the chromatic number of slices without monochromatic unit arithmetic progressions. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/