On the chromatic number of slices without monochromatic unit arithmetic progressions
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $h,n\geq 1$ and $e>0$ we consider a chromatic number of the spaces $\mathbb{R}^n\times[0, e]^h$ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any $n$ there exists a two-coloring of $\mathbb{R}^n$ such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form $\mathbb{R}^n\times[0, e]^h$.
Keywords: chromatic number, Hadwiger–Nelson problem.
@article{CHEB_2023_24_4_a6,
     author = {V. O. Kirova},
     title = {On the chromatic number of slices without monochromatic unit arithmetic progressions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {78--84},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/}
}
TY  - JOUR
AU  - V. O. Kirova
TI  - On the chromatic number of slices without monochromatic unit arithmetic progressions
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 78
EP  - 84
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/
LA  - en
ID  - CHEB_2023_24_4_a6
ER  - 
%0 Journal Article
%A V. O. Kirova
%T On the chromatic number of slices without monochromatic unit arithmetic progressions
%J Čebyševskij sbornik
%D 2023
%P 78-84
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/
%G en
%F CHEB_2023_24_4_a6
V. O. Kirova. On the chromatic number of slices without monochromatic unit arithmetic progressions. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/

[1] Banks W. D., Conflitti A., Shparlinski I. E., “Character sums over integers with restricted $g$-ary digits”, Illinois J. Math., 46:3 (2002), 819–836 | DOI | MR | Zbl

[2] Bruce L. Bauslaugh E., “Tearing a strip off the plan”, Journal of Graph Theory, 29:1 (1998), 17–33 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] D. Coulson, “A 15-colouring of 3-space omitting distance one”, Discrete Mathematics, 256:1 (2002), 83–90 | DOI | MR | Zbl

[4] D. D. Cherkashin, A. J. Kanel-Belov, G. A. Strukov, V. A. Voronov, On the chromatic numbers of 3-dimensional slices, 2022 | MR

[5] A.D.N.J. de Grey, “The chromatic number of the plane is at least $5$”, Geombinatorics, 28 (2018), 18–31 | MR | Zbl

[6] P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus, “Euclidean Ramsey theorems I”, J. Combin. Theory Ser. A, 14:3 (1973), 341–363 | DOI | MR | Zbl

[7] P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus, “Euclidean Ramsey theorems II”, Infinite and Finite Sets (Keszthely, Hungary), Colloq. Math. Soc. J. Bolyai, 10, North-Holland, Amsterdam, 1973, 520–557 | MR

[8] P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus, “Euclidean Ramsey theorems III”, Infinite and Finite Sets (Keszthely, Hungary), Colloq. Math. Soc. J. Bolyai, 10, North-Holland, Amsterdam, 1973, 559–583 | MR

[9] G. Exoo, D. Ismailescu, “The chromatic number of the plane is at least $5$: A new proof”, Disc. Comput. Geom., 64:1 (2020), 216–226 | DOI | MR | Zbl

[10] N. Frankl, A. Kupavskii, A. Sagdeev, Max-norm Ramsey Theory, 2021, arXiv: 2111.08949 | MR

[11] N. Frankl, A. Kupavskii, A. Sagdeev, “Schmidt–Tuller conjecture on linear packings and coverings”, Proceedings of the American Mathematical Society, 151:6 (2023), 2353–2362 | MR | Zbl

[12] A. Kanel-Belov, V. Voronov, and D. Cherkashin, “On the chromatic number of an infinitesimal plane layer”, St. Petersburg Mathematical Journal, 29:5 (2018), 761–775 | DOI | MR | Zbl

[13] Kiran B. Chilakamarri, “The unit-distance graph problem: a brief survey and some new results”, Bull. Inst. Combin. Appl., 8(39), C60 | MR

[14] V. Kirova, A. Sagdeev, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM Journal on Discrete Mathematics, 37:2 (2023) | DOI | MR | Zbl

[15] A. Kupavskii, A. Sagdeev, “All finite sets are Ramsey in the maximum norm”, Forum Math. Sigma, 9 (2021), e55, 12 pp. | DOI | MR | Zbl

[16] D. G. Larman, A. C. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:01 (1972), 1–24 | DOI | MR | Zbl

[17] R. Prosanov, “A new proof of the Larman-Rogers upper bound for the chromatic number of the Euclidean space”, Discrete Appl. Math., 276 (2020), 115–120 | DOI | MR | Zbl

[18] A.M. Raigorodskii, “On the Chromatic Number of a Space”, Russian Math. Surveys, 55 (2000), 351–352 | DOI | MR | Zbl

[19] R. Radoicic, G. Toth, “Note on the chromatic number of the space”, Discrete and Computational Geometry, Algorithms and Combinatorics, 25, Springer, 2003, 695–698 | DOI | MR

[20] A. Soifer, The mathematical coloring book, Springer-Verlag, New York, 2009 | MR | Zbl

[21] V. Voronov, A. Kanel-Belov, G.Strukov, D. Cherkashin, “On the chromatic numbers of 3-dimensional slices”, Journal of Mathematical Sciences, 518 (2022), 94–113 | MR