On the chromatic number of slices without monochromatic unit arithmetic progressions
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84
Voir la notice de l'article provenant de la source Math-Net.Ru
For $h,n\geq 1$ and $e>0$ we consider a chromatic number of the spaces $\mathbb{R}^n\times[0, e]^h$ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any $n$ there exists a two-coloring of $\mathbb{R}^n$ such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form $\mathbb{R}^n\times[0, e]^h$.
Keywords:
chromatic number, Hadwiger–Nelson problem.
@article{CHEB_2023_24_4_a6,
author = {V. O. Kirova},
title = {On the chromatic number of slices without monochromatic unit arithmetic progressions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {78--84},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/}
}
V. O. Kirova. On the chromatic number of slices without monochromatic unit arithmetic progressions. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 78-84. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a6/