Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a5, author = {V. O. Kirova and I. V. Godunov}, title = {On the complexity functions of {Sturmian} words}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {63--77}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a5/} }
V. O. Kirova; I. V. Godunov. On the complexity functions of Sturmian words. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 63-77. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a5/
[1] Banks W. D., Conflitti A., Shparlinski I. E., “Character sums over integers with restricted $g$-ary digits”, Illinois J. Math., 46:3 (2002), 819–836 | DOI | MR | Zbl
[2] Avgustinovich S., Cassaigne J., Frid A., “Sequences of low arithmetical complexity”, Theoret. Inform. Appl., 40 (2006), 569–582 | DOI | MR | Zbl
[3] Allouche J.-P., Baake M., Cassaigne J., Damanik D., “Palindrome complexity Selected papers in honor of Jean Berstel”, Theoret. Comput. Sci., 292:1 (2003), 9–31 | DOI | MR | Zbl
[4] Avgustinovich S. V., Fon-Der-Flaass D. G., Frid A. E., “Arithmetical complexity of infnite words”, Proc. Words, Languages and Combinatorics III (2000), World Scientifc, Singapore, 2003, 51–62 | DOI | MR
[5] Berstel J., “P. Seebold. Sturmian words”, Algebraic Combinatorics on Words, ed. M. Lothaire, Cambridge University Press, 2002, 40–97 | MR
[6] Berstel J., M. Pocchiola, “A geometric proof of the enumeration formula for Sturmian words”, Int. J. Algebra and Comput., 3 (1993), 349–355 | DOI | MR | Zbl
[7] Bell J. P., Shallit J., “Lie complexity of words”, Theoret. Comput. Sci., 2022 (to appear) | MR
[8] Brown C., “A characterization of the quadratic irrationals”, Canad. Math. Bull., 36:4 (1991) | MR | Zbl
[9] Bresenham J. E., “Algorithm for computer control of a digital plotter”, IBM Systems J., 1965, 25–30 | DOI
[10] Cassaigne J., E.A. Frid, “On the arithmetical complexity of Sturmian words”, Theoretical Computer Science, 380 (2007), 304–316 | DOI | MR | Zbl
[11] Cassaigne J., Fici G., Sciortino M., Zamboni L., “Cyclic complexity of words”, J. Combin. Theory Ser. A, 145 (2017), 36–56 | DOI | MR | Zbl
[12] Cassaigne J., Richomme G., Saari K., Zamboni L., “Avoiding. Abelian powers in binary words with bounded Abelian complexity”, Internat. J. Found. Comput. Sci., 22 (2011), 905–920 | DOI | MR | Zbl
[13] Cassaigne J., Kaborée I., Tapsoba T., “On a new notion of complexity on infinite words”, Acta Univ. Sapientiae Math., 2:2 (2010), 127–136 | MR | Zbl
[14] Ethan M. Coven, Hedlund G., “Sequences with minimal block growth”, Mathematical systems theory, 7 (1973), 138–153 | DOI | MR | Zbl
[15] Dulucq S., D. Gouyou-Beauchamp, Sur les facteurs des suites de Sturm, Rapport No. I-8735, Comput. Sci., 1987
[16] A. Frid, “Sequences of linear arithmetical complexity”, Theoret. Comput. Sci., 339 (2005), 68–87 | DOI | MR | Zbl
[17] A. Frid, “A lower bound for the arithmetical complexity of Sturmian words”, Siberian Electron. Math. Rep., no. 2, 14–22 (in Russian, English abstract) | MR | Zbl
[18] Fraenkel A.S., M. Mushkin, U. Tassa, “Determination of by $[n\theta]$ its sequence of differences”, Canad. Math. Bull., 1978, 441–446 | DOI | MR | Zbl
[19] Kamae T., Zamboni L., “Sequence entropy and the maximal pattern complexity of infinite words”, Ergodic Theory and Dynamical Systems, 22:4 (2002), 1191–1199 | MR | Zbl
[20] Karhumaki J., Saarela A., Zamboni L. Q., “On a generalization of abelian equivalence and complexity of infinite words”, J. Combin. Theory, Ser. A, 120:8 (2013), 2189–2206 | DOI | MR | Zbl
[21] Hedlund G.A., M. Morse, “Symbolic dynamics”, Amer. J. Math., 1938, 815–866 | MR | Zbl
[22] Hedlund G.A., M. Morse, “Sturmian sequences”, Amer. J. Math., 1940 | MR
[23] Hedlund G.A., “Sturmian minimal sets”, Amer. J. Math., 1944, 605–620 | DOI | MR | Zbl
[24] Ito S., Yasutomi S., “On continued fractions, substitutions and characteristic sequences”, Japan. J. Math., 1990, 287–306 | DOI | MR | Zbl
[25] Leibman A., Bergelson V., “Polynomial extensions of van der Waerden's and Szemeredi's theorems”, Journal of the American Math Society, 9 (1996), 725–753 | DOI | MR | Zbl
[26] Mignosi F., “On the number of factors of Sturmian words”, Theoret. Comput. Sci., 1991, 71–84 | DOI | MR | Zbl
[27] Mignosi F., and Restivo A., “A new complexity function for words based on periodicity”, Int. J. Algebra Comput., 23:4 (2013), 963–988 | DOI | MR
[28] Queffelec M., Substitution Dynamical Systems, Spectral Analysis Lecture Notes Math., 1294, Springer-Verlag, 1987 | DOI | MR | Zbl
[29] Rauzy G., “Suites a termes dans un alphabet fini”, Semin. Theorie des Nombres, 1982–1983, Bordeaux, 25-01–25-16 | MR
[30] Rauzy G., “Mots infinis en arithmetique”, Automata on infinite words, Lect. Notes Comp. Sci., ed. D. Perrin, 1985, 165–171 | MR | Zbl
[31] Rauzy G., “Sequences defined by iterated morphisms”, Workshop on Sequences, Lecture Notes Comput. Sci., ed. R. Capocelli (to appear) | MR
[32] Rigo M., Salimov P., “Another generalization of abelian equivalence: Binomial complexity of infinite words”, Theoret. Comput. Sci., 601 (2015), 47–57 | DOI | MR | Zbl
[33] Seebold P., “Fibonacci morphisms and Sturmian words”, Theoret. Comput. Sci., 1991, 367–384 | MR
[34] Series C., “The geometry of Marhoff numbers”, The Mathematical Intelligencer, 1985, 20–29 | DOI | MR | Zbl
[35] Stolarsky K., “Beatty sequences, continued fractions, and certain shift operators”, Cand. Math. Bull., 1976, 473–482 | DOI | MR | Zbl
[36] Szemeredi E., “On sets of integers containing no k elements in arithmetic progression”, Acta Arithm., 27 (1975), 199–245 | DOI | MR | Zbl
[37] E. Szemeredi, Regular partitions of graphs, Computer science department, School of Humanities and Sciences, Stanford University, 1975
[38] Thue A., “Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”, Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania, 1912
[39] Thue A., “Uber unendliche Zeichenreihen”, Norske Vid. Skrifter I Mat. Nat. Kl., Christiania, 7 (1906), 1–22; 10, 1–67
[40] Venkov A., Elementary Number Theory, Wolter-Noordho, Groningen, 1970 | MR | Zbl
[41] Van der Waerden B.L., “Beweis einer Baudetschen Vermutung”, Nieuw Arch. Wisk, 15 (1927), 212–216
[42] Russian Math. Surveys, 61:6 (2006), 1101–1166 | DOI | DOI | MR | Zbl