The intertwining operator for the generalized Dunkl transform on the line
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 48-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In harmonic analysis on a line with power weight, the unitary Dunkl transform first appeared. It depends on only one parameter $k\ge 0$. Then the two-parameter $(k,a)$-generalized Fourier transform appeared, a special case of which is the Dunkl transform $(a=2)$. The presence of the parameter $a>0$ at $a\neq 2$ leads to the appearance of deformation properties. For example, for functions in Schwarz space, the generalized Fourier transform may not be infinitely differentiable or decay rapidly at infinity. In the case of the sequence $a=2/(2r+1)$, $r\in\mathbb{Z}_+$, the deformation properties of the generalized Fourier transform are very weak and after some change of variables they disappear. The resulting unitary transform for $r=0$ gives the usual Dunkl transform and has many of its properties. It is called the generalized Dunkl transform. We define the intertwining operator that establishes a connection between the second-order differential-difference operator, for which the kernel of the generalized Dunkl transform is an eigenfunction, and the one-dimensional Laplace operator and allows us to write the kernel in a form convenient for its estimates. Unlike the intertwining operator for the Dunkl transform, it has a nonzero kernel. In the paper, also on the basis of the properties of the generalized Dunkl transform, the properties of the $(k,a)$-generalized Fourier transform for $a=2/(2r+1)$ are established.
Keywords: $(k,a)$-generalized Fourier transform, generalized Dunkl transform, generalized translation operator, convolution, generalized means.
@article{CHEB_2023_24_4_a4,
     author = {V. I. Ivanov},
     title = {The intertwining operator for the generalized {Dunkl} transform on the line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {48--62},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - The intertwining operator for the generalized Dunkl transform on the line
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 48
EP  - 62
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/
LA  - ru
ID  - CHEB_2023_24_4_a4
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T The intertwining operator for the generalized Dunkl transform on the line
%J Čebyševskij sbornik
%D 2023
%P 48-62
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/
%G ru
%F CHEB_2023_24_4_a4
V. I. Ivanov. The intertwining operator for the generalized Dunkl transform on the line. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 48-62. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/

[1] Gorbachev D., Ivanov V., Tikhonov S., “On the kernel of the $(\kappa,a)$-Generalized Fourier transform”, Forum of Mathematics, Sigma, 11 (2023), e72, 25 pp. | DOI | MR | Zbl

[2] Ivanov V. I., “Undeformed generalized Dunkl transform on the line”, Math. Notes, 114:4 (2023), 509–524 | DOI

[3] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR

[4] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[5] Ben Saïd S., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[6] Bateman H., Erdelyi A., Tables of Integral Transforms, v. II, McGraw Hill Book Company, New York, 1954, 451 pp. | MR

[7] Boubatra M. A., Negzaoui S., Sifi M., “A new product formula involving Bessel functions”, Integral Transforms Spec. Funct., 33:3 (2022), 247–263 | DOI | MR | Zbl

[8] Mejjaoli H., “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39 | MR

[9] Mejjaoli H., Trimèche K., “Localization Operators and Scalogram Associated with the Deformed Hankel Wavelet Transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR | Zbl

[10] Ivanov V. I., “One-dimensional $(k,a)$-generalized Fourier transform”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 4, 2023, 92–108 (In Russian)

[11] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995, 804 pp.

[12] Grafacos L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer Science+Business Media, LLC, New York, 2008, 489 pp. | DOI | MR

[13] Ben Saïd S., Negzaoui S., “Norm inequalities for maximal operators”, Journal of Inequalities and Applications, 2022, 134 | DOI | MR