Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a4, author = {V. I. Ivanov}, title = {The intertwining operator for the generalized {Dunkl} transform on the line}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {48--62}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/} }
V. I. Ivanov. The intertwining operator for the generalized Dunkl transform on the line. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 48-62. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a4/
[1] Gorbachev D., Ivanov V., Tikhonov S., “On the kernel of the $(\kappa,a)$-Generalized Fourier transform”, Forum of Mathematics, Sigma, 11 (2023), e72, 25 pp. | DOI | MR | Zbl
[2] Ivanov V. I., “Undeformed generalized Dunkl transform on the line”, Math. Notes, 114:4 (2023), 509–524 | DOI
[3] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR
[4] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[5] Ben Saïd S., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl
[6] Bateman H., Erdelyi A., Tables of Integral Transforms, v. II, McGraw Hill Book Company, New York, 1954, 451 pp. | MR
[7] Boubatra M. A., Negzaoui S., Sifi M., “A new product formula involving Bessel functions”, Integral Transforms Spec. Funct., 33:3 (2022), 247–263 | DOI | MR | Zbl
[8] Mejjaoli H., “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39 | MR
[9] Mejjaoli H., Trimèche K., “Localization Operators and Scalogram Associated with the Deformed Hankel Wavelet Transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR | Zbl
[10] Ivanov V. I., “One-dimensional $(k,a)$-generalized Fourier transform”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 4, 2023, 92–108 (In Russian)
[11] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995, 804 pp.
[12] Grafacos L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer Science+Business Media, LLC, New York, 2008, 489 pp. | DOI | MR
[13] Ben Saïd S., Negzaoui S., “Norm inequalities for maximal operators”, Journal of Inequalities and Applications, 2022, 134 | DOI | MR