Factor and arithmetic complexity of concatenating the $n!$
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we show that factor complexity of the infinite word $\mathfrak{F}_b$ is defined by concatenating base-$b$ representations of the $n!$ is full. Then we show that the arithmetic complexity of this word is full as well. On the other hand, $\mathfrak{F}_b$ is a disjunctive word. In number theory, this kind of words is called rich numbers.
Keywords:
factor complexity, equidistributed modulo $1$, Weyl's criterion, digital problems, factorials.
@article{CHEB_2023_24_4_a20,
author = {A. Duaa and M. Meisami},
title = {Factor and arithmetic complexity of concatenating the $n!$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {341--344},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/}
}
A. Duaa; M. Meisami. Factor and arithmetic complexity of concatenating the $n!$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/