Factor and arithmetic complexity of concatenating the $n!$
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that factor complexity of the infinite word $\mathfrak{F}_b$ is defined by concatenating base-$b$ representations of the $n!$ is full. Then we show that the arithmetic complexity of this word is full as well. On the other hand, $\mathfrak{F}_b$ is a disjunctive word. In number theory, this kind of words is called rich numbers.
Keywords: factor complexity, equidistributed modulo $1$, Weyl's criterion, digital problems, factorials.
@article{CHEB_2023_24_4_a20,
     author = {A. Duaa and M. Meisami},
     title = {Factor and arithmetic complexity of concatenating the $n!$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {341--344},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/}
}
TY  - JOUR
AU  - A. Duaa
AU  - M. Meisami
TI  - Factor and arithmetic complexity of concatenating the $n!$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 341
EP  - 344
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/
LA  - en
ID  - CHEB_2023_24_4_a20
ER  - 
%0 Journal Article
%A A. Duaa
%A M. Meisami
%T Factor and arithmetic complexity of concatenating the $n!$
%J Čebyševskij sbornik
%D 2023
%P 341-344
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/
%G en
%F CHEB_2023_24_4_a20
A. Duaa; M. Meisami. Factor and arithmetic complexity of concatenating the $n!$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/

[1] S.V. Avgustinovich, D.G. Fon-Der-Flaass, A.E. Frid, “Arithmetical complexity of infinite words”, Languages and Combinatorics III, Proc. 3rd ICWLC, Kyoto, March 2000, World Scientific, Singapore, 2003, 51–62 | DOI | MR

[2] L.Kuipers, H. Niderreiter, Uniform Distribution of Sequences, Pure and applied mathematics, A Wiley-Interscience publication, New York, 1974 | MR | Zbl

[3] J. E. Maxfield, “A Note on $n!$”, Mathematics Magazine, 43 (1997), 64–67 | DOI | MR

[4] M. Morse, G. A. Hedlund, “Symbolic dynamics”, Amer. J. Math., 60 (1938), 815–866 | DOI | MR | Zbl

[5] M. Rigo, Formal languages, automata and numeration systems, v. 1, Introduction to combinatorics on words, John Wiley Sons, 2014 | MR