Factor and arithmetic complexity of concatenating the $n!$
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we show that factor complexity of the infinite word $\mathfrak{F}_b$ is defined by concatenating base-$b$ representations of the $n!$ is full. Then we show that the arithmetic complexity of this word is full as well. On the other hand, $\mathfrak{F}_b$ is a disjunctive word. In number theory, this kind of words is called rich numbers.
Keywords:
factor complexity, equidistributed modulo $1$, Weyl's criterion, digital problems, factorials.
@article{CHEB_2023_24_4_a20,
author = {A. Duaa and M. Meisami},
title = {Factor and arithmetic complexity of concatenating the $n!$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {341--344},
year = {2023},
volume = {24},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/}
}
A. Duaa; M. Meisami. Factor and arithmetic complexity of concatenating the $n!$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 341-344. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a20/
[1] S.V. Avgustinovich, D.G. Fon-Der-Flaass, A.E. Frid, “Arithmetical complexity of infinite words”, Languages and Combinatorics III, Proc. 3rd ICWLC, Kyoto, March 2000, World Scientific, Singapore, 2003, 51–62 | DOI | MR
[2] L.Kuipers, H. Niderreiter, Uniform Distribution of Sequences, Pure and applied mathematics, A Wiley-Interscience publication, New York, 1974 | MR | Zbl
[3] J. E. Maxfield, “A Note on $n!$”, Mathematics Magazine, 43 (1997), 64–67 | DOI | MR
[4] M. Morse, G. A. Hedlund, “Symbolic dynamics”, Amer. J. Math., 60 (1938), 815–866 | DOI | MR | Zbl
[5] M. Rigo, Formal languages, automata and numeration systems, v. 1, Introduction to combinatorics on words, John Wiley Sons, 2014 | MR