On one generalized interpolation polynomial operator
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the construction of a generalized polynomial operator necessary for finding approximate solutions of equations with fractional order of integration. Integral equations of fractional order are used in a number of problems related to the study of processes that behave discontinuously, for example, for diffusion problems, economic problems related to the theory of sustainable development and other similar problems. At present, interest in such equations has increased, as evidenced by the publications of recent years in which the processes described by such equations are investigated. In this connection, it becomes relevant to study methods for solving such problems. Since these equations cannot be solved exactly, there is a need to develop and apply approximate methods for their solution. In this article we obtain a form of polynomial operator for some continuous functions on $(0,2\pi)$ expressed through the Lagrange interpolation polynomial on equally spaced knots. The connection of the generalized interpolation operator with the Fourier operator is also established, and the closeness value of these operators is obtained. For the interpolation polynomial operator an estimate of the error of approximation of the exact value by the metric of the space of $(0,2\pi)$ continuous functions is found. This work is a continuation of the research of the authors.
Keywords: approximate methods, interpolation polynomial operators, error estimation.
@article{CHEB_2023_24_4_a2,
     author = {A. F. Galimyanov and T. Yu. Gorskaya},
     title = {On one generalized interpolation polynomial operator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a2/}
}
TY  - JOUR
AU  - A. F. Galimyanov
AU  - T. Yu. Gorskaya
TI  - On one generalized interpolation polynomial operator
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 22
EP  - 32
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a2/
LA  - ru
ID  - CHEB_2023_24_4_a2
ER  - 
%0 Journal Article
%A A. F. Galimyanov
%A T. Yu. Gorskaya
%T On one generalized interpolation polynomial operator
%J Čebyševskij sbornik
%D 2023
%P 22-32
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a2/
%G ru
%F CHEB_2023_24_4_a2
A. F. Galimyanov; T. Yu. Gorskaya. On one generalized interpolation polynomial operator. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 22-32. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a2/

[1] Marinov T. M., Ramirez N., Santamaria F., “Fractional integration toolbox”, Fractional Calculus and Applied Analysis, 16:3 (2013), 670–681 | DOI | MR | Zbl

[2] Barton T. A., Purnaras I. K., “Lp-solutions of singular integro-differential equations”, J. Math. Anal. Appl., 386 (2012), 830–841 | DOI | MR

[3] Saeed R. K., Ahmed C., “Approximate solution for the system of non-linear Volterra integral equations of the second kind by using block-by-block method”, Australian Journal of Basic and Applied Sciences, 2:1 (2008), 114–124

[4] Tarasov V. E., Models of theoretical physics with fractional-order integro-differentiation, Institute for Computer Research, M., 2011, 298 pp. | MR

[5] Горская Т. Ю., Галимянов А. Ф., “Обобщенный метод Бубнова-Галеркина для уравнений с дробно-интегральным оператором”, Известия КГАСУ, 2014, no. 4(30), 398–402

[6] Галимянов А. Ф., Сафиуллина Д. Э., “Квадратурный метод решения интегрального уравнения смешанного типа”, Изв. Вузов. Математика, 2009, no. 12, 22–27 | MR | Zbl

[7] Gorskaya T. Uy., Galimynov A. F., Vorontsova V. L., “The quadrature formula for the hypersingular integral with a logarithmically weakened kernel”, Theses of reports of the 69th international scientific conference on problems of architecture and construction (Kazan), 2017, 373 | MR

[8] Galimyanov A., Gorskaya T., “Fractional Order Integrals for the Sustainable Development Model”, IOP Conf. Ser.: Mater. Sci. Eng., 890 (2020), 012180 | DOI

[9] Doha E. H., Bhrawy A. H., Baleanu D., Ezz-Eldien S. S., Hafez R. M., “An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems”, Advances in Difference Equations, 2015, no. 1 | MR

[10] Liu W., Wang L. L., Li H., “Optimal error estimates for chebyshev approximations of functions with limited regularity in fractional Sobolev-Type Spaces”, Mathematics of Computation, 88:320 (2019), 2857–2895 | DOI | MR | Zbl

[11] Chel Kwun, Y., Farid, G., Min Kang, S., Khan Bangash, B., Ullah, S., “Derivation of bounds of several kinds of operators via (s, m)-convexity”, Advances in Difference Equations, 2020, no. 1, 5 | DOI | MR

[12] Zada A., Alzabut, J., Waheed, H., Popa, I.-L., “Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions”, Advances in Difference Equations, 2020, no. 1, 64 | DOI | MR | Zbl

[13] Mohammed P. O., Sarikaya M. Z., “On generalized fractional integral ine-qualities for twice differentiable convex functions”, Journal of Computational and Applied Mathematics, 372 (2020), 112740 | DOI | MR | Zbl

[14] Rahman G., Nisar K,S., Abdeljawad T., Ullah S., “Certain fractional pro-portional integral inequalities via convex functions”, Mathematics, 8:2 (2020), 222 | DOI | MR

[15] Rahman G., Nisar K. S., Khan S. U., Baleanu D., Vijayakumar V., “On the weighted fractional integral inequalities for Chebyshev functionals”, Advances in Difference Equations, 2021, no. 1, 18 | DOI | MR

[16] Baleanu D., Kashuri A., Mohammed P. O., Meftah B., “General Raina fractional integral inequalities on coordinates of convex functions”, Advances in Difference Equations, 2021, no. 1, 82 | DOI | MR

[17] Mamausupov J. Sh., “The Mellin integral transformation for the fractional order integrodifferential operator”, Periodica Journal of Modern Philosophy, Social Sciences and Humanities, 11 (2022), 186–188

[18] Kovalevskaya E. I., “Trigonometricheskie summy v metricheskoi teorii diofantovykh priblizhenii”, Chebyshevckii sbornik, 20:2 (2019), 207–220 | DOI | MR | Zbl